33 research outputs found
Continuous single pass diafiltration with alternating permeate flow direction for high efficiency buffer exchange
Looking at current trends within downstream processing (DSP) of high value bioproducts, it shows that there are ongoing efforts in replacing batch processes by continuous variants. However, a unit procedure which still lacks a simple and compact continuous variant is diafiltration. Here, we present such a single piece of diafiltration equipment achieving continuous buffer exchange of up to 99.90%. The device is composed of a 3D-printed single pass diafiltration (SPDF) module containing two commercial ultrafiltration membranes. While the retentate is flowing through a narrow channel between the two membranes, the channels above and below can supply diafiltration buffer or remove permeate solution. The obtained results illustrate systematically the vulnerability of the device to the effect of concentration polarization at the membrane surface, and that this problem can be strongly reduced using an alternating direction of diafiltration buffer perfusion through the membranes as process inherent backflush. By this, a quasi-stationary operation could be obtained during continuous diafiltration, making the device an interesting option for in-process buffer exchange
The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation
Introduction
Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers.
Methods
After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA).
Results
PBMCs showed significantly higher mitochondrial O2 uptake and lower
O
2
•
−
production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis.
Conclusion
In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected.
O
2
•
−
concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods
Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla
<p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p
method development and application
Die Gewebedifferenzierung des Myokards mittels suszeptibilitäts- (T2*)
gewichteter Kartierungstechniken findet in der (prä)-klinischen
kardiovaskulären Magnetresonanzbildgebung steigenden Einsatz. Der Anstieg der
Suszeptibilitätsempfindlichkeit bei steigenden Magnetfeldstärken macht die
myokardiale T2* Kartierung bei hohen Magnetfeldstärken konzeptionell besonders
attraktiv. Die Anwendungsmöglichkeiten der T2* gewichteten Herz MRT sind unter
anderem die Erkennung myokardialer Ischämien, die Charakterisierung der
Sauerstoffversorgung und die Darstellung der Mikrostruktur des Herzmuskels. In
dieser Arbeit werden geeignete Methoden entwickelt um die myokardialen T2*
gewichtete Bildgebung bei hohen (3 T) und ultrahohen (7 T) Magnetfeldstärken
durchzuführen. Zu diesem Zweck werden T2* gewichtete Pulssequenzen an die
Anforderungen der Hochfeld MRT angepasst und Hochfrequenzspulen mit 4, 8, 16
und 32 Sende- und Empfangskanälen für die Herzbildgebung bei 7 T entwickelt
und evaluiert. In Phantomexperimenten werden diese Pulssequenzen, welche eine
dynamische, zeitlich aufgelöste (CINE) Kartierung erlauben mit etablierten
Techniken validiert. In einer Studie mit gesunden Probanden werden zudem B0
Shimming Techniken angewendet um makroskopische Feldinhomogenitäten zu
reduzieren und dadurch die Suszeptibiltätsempfindlichkeit gegenüber
mikroskopischen Effekten zu verstärken. Diese Arbeit liefert erste in-vivo
Normwerte für T2* Zeiten im gesunden humanen Herzmuskel bei 7 T und vergleicht
diese Ergebnisse mit Daten welche bei 1.5 T und 3 T erhoben wurden. Die
maximale B0 Differenz konnte durch einen volumenselektiven Shim von etwa 400
Hz auf etwa 80 Hz für den Vierkammerblick und auf etwa 65 Hz für einen
mitventrikulären Kurzachsenblick des Herzens reduziert werden. Die längsten
T2* -Werte wurden für anteriore (T2* = 14,0 ms), anteroseptale (T2* = 17,2 ms)
und inferoseptale (T2* = 16,5 ms) Myokardsegmenten gefunden. Die kürzesten T2*
-Werte hingegen wurden für beobachtet inferiore (T2* = 10,6 ms) und
inferolaterale (T2* = 11,4 ms) Segmente. Zwischen der end-diastolischen und
end-systolischen Herzphase wurden signifikante Unterschiede (p = 0,002) in den
T2*-Werten beobachtet mit Änderungen von T2* -Werten von bis zu ca. 27% über
den Herzzyklus, welche besonders in der Herzscheidewand ausgeprägt waren. Die
T2* gewichtete Bildgebung bei 7 T bietet die Möglichkeit Änderungen der
Sauerstoffsättigung im Herzmuskel zu visualisieren und zu quantifizieren.
Bestehende Limitationen bezüglich räumlicher und zeitlicher Auflösung der
konventionell eingesetzten Perfusions-Bolusmessungen mit Kontrastmittel
könnten dadurch umgangen werden. Der endogene Kontrast des BOLD Effekts
ermöglicht es, Änderungen im Gleichgewicht zwischen Sauerstoffversorgung und
Sauerstoffnachfrage früh zu erkennen und zu visualisieren. Zusammenfassend
unterstreichen diese Ergebnisse die Herausforderungen des myokardialen T2*
Kartierung bei 7 T, zeigen jedoch, dass diese Probleme durch maßgeschneiderte
B0-Shimming Techniken und angepasste Akquisitionstechniken kompensiert werden
können.Myocardial tissue characterization using T2* relaxation mapping techniques is
an emerging application of (pre)clinical cardiovascular magnetic resonance
imaging. The increase in microscopic susceptibility at higher magnetic field
strengths renders myocardial T2* mapping at ultrahigh magnetic fields
conceptually appealing. Applications of T2* weighted cardiac MR include the
detection of myocardial ischemia, the characterization of oxygen supply and
the microstructure of the cardiac muscle. This work develops methods for
myocardial T2* mapping at high (3 T) and ultrahigh (7 T) magnetic field
strengths. For this reason T2* weighted pulse sequences are adapted to the
requirements of highfield MRI and dedicated RF coils with 4, 8, 16 and 32
transmit and receive channels are developed for cardiac imaging at ultrahigh
field strengths. In phantom experiments the pulse sequences, which provide
dynamic, time resolved maps are benchmarked against conventional techniques.
In a volunteer study B0 shimming techniques are applied to reduce macroscopic
field inhomogeneities and therefore increase the susceptibility sensitivity
for microscopic effects. This work presents the first in-vivo norm values T2*
values in the healthy human cardiac muscle at 7 T and compares it to results
which were collected at 1.5 T and 3 T. for . The peak-to-peak B0 difference
following volume selective shimming was reduced from approximately 400 Hz to
approximately 80 Hz for the four chamber view and mid-ventricular short axis
view of the heart and to 65 Hz for the left ventricle. The longest T2* values
were found for anterior (T2* = 14.0 ms), anteroseptal (T2* = 17.2 ms) and
inferoseptal (T2* = 16.5 ms) myocardial segments. Shorter T2* values were
observed for inferior (T2* = 10.6 ms) and inferolateral (T2* = 11.4 ms)
segments. A significant difference (p = 0.002) in T2* values was observed
between end-diastole and end-systole with T2* changes of up to approximately
27% over the cardiac cycle which were pronounced in the septum. T2* weighted
imaging at 7 T offers the potential to visualize and quantify changes in
oxygen supply in the cardiac muscle. Existing limitations regarding spatial
and temporal resolution of conventional first-pass perfusion imaging with
contrast agents can avoided. The endogenous contrast provided by the BOLD
effect allows the early detection of imbalances in oxygen supply and demand.
To conclude, these results underscore the challenges of myocardial T2* mapping
at 7.0 T but demonstrate that these issues can be offset by using tailored
shimming techniques and dedicated acquisition schemes
Quantification of myocardial effective transverse relaxation time with magnetic resonance at 7.0 tesla for a better understanding of myocardial (patho)physiology
Cardiovascular magnetic resonance imaging (CMR) has become an indispensable tool in the assessment of cardiac structure, morphology, and function. CMR also affords myocardial tissue characterization and probing of cardiac physiology, both being in the focus of ongoing research. These developments are fueled by the move to ultrahigh magnetic field strengths, which permits enhanced sensitivity and spatial resolution that help to overcome limitations of current clinical MR systems. This chapter reviews the potential of using CMR as a means to assess physiology in the heart muscle by exploiting quantification of myocardial effective transverse relaxation times (T2 * ) for the better understanding of myocardial (patho)physiology. For this purpose the basic principles of T2 * mapping, the biophysical mechanisms governing T2 * , and Otherwise this implies that all preclinical applications of myocardial T2 * mapping ever done are being presented which is not the case. Technological challenges and solutions for T2 * -sensitized CMR at ultrahigh magnetic field strengths are discussed followed by a survey of acquisition techniques and post processing approaches. Preliminary results derived from myocardial T2 * mapping of healthy subjects and in patients at 7.0 T are presented. A concluding section provides an outlook including future developments and potential applications