99 research outputs found

    Embryonic development of pleuropodia of the cicada, Magicicada cassini

    Get PDF
    In many insects the first abdominal segment possesses embryonic appendages called pleuropodia. Here we show the embryogenesis of pleuropodial cells of the periodical cicada, Magicicada cassini (Fisher 1851) (Insecta, Homoptera, Cicadidae). An antibody, anti-horseradish perioxidase (HRP), that is usually neuron-specific strongly marked the pleuropodial anlagen and revealed their ectodermal origin shortly after limb bud formation. Thereafter the cells sank into the epidermis and their apical parts enlarged. A globular part protruded from the body wall. Filamentous structures were marked at the stem region and into the apical dilation. In later embryonic stages the pleuropodia degenerated. Despite the binding of anti-HRP the cells had no morphological neuronal characters and cannot be regarded as neurons. The binding indicates that glycosylated cell surface molecules contribute to the adhesion between the presumably glandular pleuropodial cells. In comparison, anti-HRP does not mark the pleuropodia of Orthoptera

    Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    Using Combined Morphological, Allometric and Molecular Approaches to Identify Species of the Genus Raillietiella (Pentastomida)

    Get PDF
    Taxonomic studies of parasites can be severely compromised if the host species affects parasite morphology; an uncritical analysis might recognize multiple taxa simply because of phenotypically plastic responses of parasite morphology to host physiology. Pentastomids of the genus Raillietiella are endoparasitic crustaceans primarily infecting the respiratory system of carnivorous reptiles, but also recorded from bufonid anurans. The delineation of pentastomids at the generic level is clear, but the taxonomic status of many species is not. We collected raillietiellids from lungs of the invasive cane toad (Rhinella marina), the invasive Asian house gecko (Hemidactylus frenatus), and a native tree frog (Litoria caerulea) in tropical Australia, and employed a combination of genetic analyses, and traditional and novel morphological methods to clarify their identity. Conventional analyses of parasite morphology (which focus on raw values of morphological traits) revealed two discrete clusters in terms of pentastome hook size, implying two different species of pentastomes: one from toads and a tree frog (Raillietiella indica) and another from lizards (Raillietiella frenatus). However, these clusters disappeared in allometric analyses that took pentastome body size into account, suggesting that only a single pentastome taxon may be involved. Our molecular data revealed no genetic differences between parasites in toads versus lizards, confirming that there was only one species: R. frenatus. This pentastome (previously known only from lizards) clearly is also capable of maturing in anurans. Our analyses show that the morphological features used in pentastomid taxonomy change as the parasite transitions through developmental stages in the definitive host. To facilitate valid descriptions of new species of pentastomes, future taxonomic work should include both morphological measurements (incorporating quantitative measures of body size and hook bluntness) and molecular data
    • …
    corecore