2 research outputs found

    Rhizomelia and impaired linear growth in a girl with juvenile paget disease

    No full text
    In ultra-rare bone diseases, information on growth during childhood is sparse. Juvenile Paget disease (JPD) is an ultra-rare disease, characterized by loss of function of osteoprotegerin (OPG). OPG inhibits osteoclast activation via the receptor activator of nuclear factor-Îş\kappaB (RANK) pathway. In JPD, overactive osteoclasts result in inflammatory-like bone disease due to grossly elevated bone resorption. Knowledge on the natural history of JPD, including final height and growth, is limited. Most affected children receive long-term antiresorptive treatment, mostly with bisphosphonates, to contain bone resorption, which may affect growth. In this study, we report the follow-up of height, growth velocity, and skeletal maturation in a 16-year-old female patient with JPD. The patient was treated with cyclic doses of pamidronate starting at 2.5 years of age and with 2 doses of denosumab at the age of 8 years, when pamidronate was paused. In the following years, a sustainable decline in a height z-score and a stunted pubertal growth spurt; despite appropriate maturation of the epiphyseal plates of the left hand, the proximal right humerus and both femora were observed. Whether this reflects the growth pattern in JPD or might be associated to the antiresorptive treatments is unclear, since there is very limited information available on the effect of bisphosphonates and denosumab on growth and the growth plate in pediatric patients. Studies are needed to understand the natural history of an ultra-rare bone disease and to assess the effects of antiresorptive treatment on the growing skeleton

    Second degree AV block and severely impaired contractility in cardiac myxedema

    No full text
    The heart is a major target organ for thyroid hormone action. Severe overt hypothyroidism can result in diastolic hypertension, lowered cardiac output, impaired left ventricular contractility and diastolic relaxation, pericardial effusion and bradycardia. However, the function of the atrial pacemaker is usually normal and the degree by which the heart rate slows down is often modest. Here we report the case of a 20 year old male Caucasian with severe overt hypothyroidism. He presented with syncopation due to second degree atrioventricular block type Mobitz 2 and heart failure with reduced ejection fraction (38 %). Laboratory testing revealed a severe overt hypothyroidism with markedly elevated TSH (>100 mIU/L) and reduced fT3 and fT4 levels. The condition was caused by hypothyroid Graves’ disease (Graves’ disease with Hashimoto component). Although magnetic resonance imaging of the heart demonstrated decreased cardiac contractility and pericardial effusion, suggesting peri-myocarditis, plasma levels for BNP and troponin I were low. A possible infectious cause was unlikely, since testing for cardiotropic viruses was negative. The patient was treated with intravenous levothyroxine and after peripheral euthyroidism had been achieved, left ventricular ejection fraction returned to normal and pericardial effusion dissolved. Additionally, bradycardiac episodes abated, although intermittent second degree AV block was still occasionally present during the night. In conclusion, overt hypothyroidism may be associated by cardiac myxedema affecting both electrophysiology and contractility, observations that underscore the necessity of thyroid testing in different phenotypes of heart failure
    corecore