54 research outputs found
Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) trial: Design and rationale.
BACKGROUND: Acute decompensated heart failure (ADHF) is a leading cause of hospitalization in older persons in the United States. Reduced physical function and frailty are major determinants of adverse outcomes in older patients with hospitalized ADHF. However, these are not addressed by current heart failure (HF) management strategies and there has been little study of exercise training in older, frail HF patients with recent ADHF.
HYPOTHESIS: Targeting physical frailty with a multi-domain structured physical rehabilitation intervention will improve physical function and reduce adverse outcomes among older patients experiencing a HF hospitalization.
STUDY DESIGN: REHAB-HF is a multi-center clinical trial in which 360 patients ≥60 years hospitalized with ADHF will be randomized either to a novel 12-week multi-domain physical rehabilitation intervention or to attention control. The goal of the intervention is to improve balance, mobility, strength and endurance utilizing reproducible, targeted exercises administered by a multi-disciplinary team with specific milestones for progression. The primary study aim is to assess the efficacy of the REHAB-HF intervention on physical function measured by total Short Physical Performance Battery score. The secondary outcome is 6-month all-cause rehospitalization. Additional outcome measures include quality of life and costs.
CONCLUSIONS: REHAB-HF is the first randomized trial of a physical function intervention in older patients with hospitalized ADHF designed to determine if addressing deficits in balance, mobility, strength and endurance improves physical function and reduces rehospitalizations. It will address key evidence gaps concerning the role of physical rehabilitation in the care of older patients, those with ADHF, frailty, and multiple comorbidities
An analysis of observed daily maximum wind gusts in the UK
The greatest attention to the UK wind climatology has focused upon mean windspeeds, despite a knowledge of gust speeds being essential to a variety of users. This paper goes some way to redressing this imbalance by analysing observed daily maximum gust speeds from a 43-station network over the period 1980–2005. Complementing these data are dynamically downscaled reanalysis data, generated using the PRECIS Regional Climate Modelling system, for the period 1959–2001. Inter-annual variations in both the observed and downscaled reanalysis gust speeds are presented, with a statistically significant (at the 95% confidence interval) 5% increase across the network in daily maximum gust speeds between 1959 and the early 1990s, followed by an apparent decrease. The benefit of incorporating dynamically downscaled reanalysis data is revealed by the fact that the decrease in gust speeds since 1993 may be placed in the context of a very slight increase displayed over the longer 1959–2001 period. Furthermore, the severity of individual windstorm events is considered, with high profile recent events placed into the context of the long term record. A daily cycle is identified from the station observations in the timing of the daily maximum gust speeds, with an afternoon peak occurring between 12:00–15:00, exhibiting spatial and intra-annual variations
Cation- and vacancy-ordering in Li_xCoO_2
Using a combination of first-principles total energies, a cluster expansion
technique, and Monte Carlo simulations, we have studied the Li/Co ordering in
LiCoO_2 and Li-vacancy/Co ordering in CoO_2. We find: (i) A ground state search
of the space of substitutional cation configurations yields the (layered) CuPt
structure as the lowest-energy state in the octahedral system LiCoO_2 (and
CoO_2), in agreement with the experimentally observed phase. (ii) Finite
temperature calculations predict that the solid-state order- disorder
transitions for LiCoO_2 and CoO_2 occur at temperatures (~5100 K and ~4400 K,
respectively) much higher than melting, thus making these transitions
experimentally inaccessible. (iii) The energy of the reaction E(LiCoO_2) -
E(CoO_2) - E(Li) gives the average battery voltage V of a Li_xCoO_2/Li cell.
Searching the space of configurations for large average voltages, we find that
CuPt (a monolayer superlattice) has a high voltage (V=3.78 V), but that
this could be increased by cation randomization (V=3.99 V), partial disordering
(V=3.86 V), or by forming a 2-layer Li_2Co_2O_4 superlattice along
(V=4.90 V).Comment: 12 Pages, RevTeX galley format, 5 figures embedded using epsf Phys.
Rev. B (in press, 1998
Obesity, Type 2 Diabetes and Bone in Adults.
In an increasingly obese and ageing population, type 2 diabetes (T2DM) and osteoporotic fracture are major public health concerns. Understanding how obesity and type 2 diabetes modulate fracture risk is important to identify and treat people at risk of fracture. Additionally, the study of the mechanisms of action of obesity and T2DM on bone has already offered insights that may be applicable to osteoporosis in the general population. Most available evidence indicates lower risk of proximal femur and vertebral fracture in obese adults. However the risk of some fractures (proximal humerus, femur and ankle) is higher, and a significant number fractures occur in obese people. BMI is positively associated with BMD and the mechanisms of this association in vivo may include increased loading, adipokines such as leptin, and higher aromatase activity. However, some fat depots could have negative effects on bone; cytokines from visceral fat are pro-resorptive and high intramuscular fat content is associated with poorer muscle function, attenuating loading effects and increasing falls risk. T2DM is also associated with higher bone mineral density (BMD), but increased overall and hip fracture risk. There are some similarities between bone in obesity and T2DM, but T2DM seems to have additional harmful effects and emerging evidence suggests that glycation of collagen may be an important factor. Higher BMD but higher fracture risk presents challenges in fracture prediction in obesity and T2DM. Dual energy X-ray absorptiometry underestimates risk, standard clinical risk factors may not capture all relevant information, and risk is under-recognised by clinicians. However, the limited available evidence suggests that osteoporosis treatment does reduce fracture risk in obesity and T2DM with generally similar efficacy to other patients
Recommended from our members
The impact of atmosphere–ocean–wave coupling on the near-surface wind speed in forecasts of extratropical cyclones
Accurate modelling of air–sea surface exchanges is crucial for reliable extreme surface windspeed forecasts. While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between the atmosphere, ocean and wave model components. Here, we investigate the sensitivity of extreme surface wind speeds to air–sea exchanges at the kilometre scale using coupled and uncoupled configurations of the Met Office’s UK Regional Coupled Environmental Prediction system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 ms−1 over the UK. Compared with the atmosphere-only results, coupling to the ocean decreases the domain-average sea-surface temperature by up to 0.5 K. Inclusion of coupling to waves reduce the 98th percentile 10-m wind speed by up to 2 ms−1 as young, growing wind waves reduce the wind speed by increasing the sea-surface aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1 ms−1, due to enhanced boundary-layer turbulence which partially offsets air–sea momentum transfer. Using a new drag parametrization based on the Coupled Ocean–Atmosphere Response Experiment 4.0 parametrization, with a cap on the neutral drag coefficient and reduction for wind speeds exceeding 27 ms−1, the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind-speed skill as coupling to waves, with the advantage of saving the computational cost of the ocean and wave models
The National Academy for Gifted and Talented Youth: Second Post-18 Annual Survey of Students (Occasional Paper 20).
This report presents the findings of the second annual survey of those members of NAGTY who had completed their secondary education and were leaving NAGTY as alumni. The purposes of the survey are to enable NAGTY to gain a picture of its students’ views on their involvement with NAGTY, and to capture data about their educational attainments and post-school destinations
- …