18 research outputs found

    Superparticle Models with Tensorial Central Charges

    Get PDF
    A generalization of the Ferber-Shirafuji formulation of superparticle mechanics is considered. The generalized model describes the dynamics of a superparticle in a superspace extended by tensorial central charge coordinates and commuting twistor-like spinor variables. The D=4 model contains a continuous real parameter a≄0a\geq 0 and at a=0 reduces to the SU(2,2|1) supertwistor Ferber-Shirafuji model, while at a=1 one gets an OSp(1|8) supertwistor model of ref. [1] (hep-th/9811022) which describes BPS states with all but one unbroken target space supersymmetries. When 0<a<1 the model admits an OSp(2|8) supertwistor description, and when a>1 the supertwistor group becomes OSp(1,1|8). We quantize the model and find that its quantum spectrum consists of massless states of an arbitrary (half)integer helicity. The independent discrete central charge coordinate describes the helicity spectrum. We also outline the generalization of the a=1 model to higher space-time dimensions and demonstrate that in D=3,4,6 and 10, where the quantum states are massless, the extra degrees of freedom (with respect to those of the standard superparticle) parametrize compact manifolds. These compact manifolds can be associated with higher-dimensional helicity states. In particular, in D=10 the additional ``helicity'' manifold is isomorphic to the seven-sphere.Comment: 32 pages, LATEX, no figure

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Phase measurements in quantum dots

    Full text link
    Recent measurements of the phase of the transmission amplitude through a quantum dot (QD) revealed interesting and unexpected physics. In particular, the phase evolution across a sequence of Coulomb Blockade (CB) peaks is demonstrated to have a peculiar structure, characterized by an increase of pi across each peak, followed by an abrupt phase lapse of pi in each CB valley. A simple theory accounting for the origin of such phase lapses as well as for their small scale is discussed, though a satisfactory explanation of the presence of a phase lapse in each CB valley is still lacking. As the temperature of the system is reduced, the Kondo effect develops in CB valleys with non-zero QD spin (Kondo valleys). The measured phase evolution in this regime is characterized by a plateau at pi in the valley, and a total increment of the phase close to 2pi across the CB peak-Kondo valley-CB peak structure. This result contrast quantitatively with the theoretical prediction for the phase evolution based on the Anderson model, i.e. a plateau at pi/2 in the Kondo valley and a total increment of pi

    Pain perception and brain evoked potentials in patients with angina despite normal coronary angiograms.

    Full text link
    OBJECTIVE: To evaluate the role of nociception in patients with angina despite normal coronary angiograms and to investigate whether any abnormality is confined to visceral or somatosensory perception. METHODS: Perception, pain threshold, and brain evoked potentials to nociceptive electrical stimuli of the oesophageal mucosa and the sternal skin were investigated in 10 patients who had angina but normal coronary angiograms, no other signs of cardiac disease, and normal upper endoscopy. Controls were 10 healthy volunteers. The peaks of the evoked potential signal were designated N for negative deflections and P for positive. Numbers were given to the peaks in order of appearance after the stimulus. The peak to peak amplitudes (P1/N1, N1/P2) were measured in microV. RESULTS: (1) Angina pectoris was provoked in seven patients following continuous oesophageal stimulation. (2) Distant projection of pain occurred after continuous electrical stimulation of the oesophagus in four patients and in no controls. (3) Patients had higher oesophageal pain thresholds (median 16.3 mA v 7.3 mA, P = 0.02) to repeated stimuli than controls, whereas the values did not differ with respect to the skin. There were no intergroup differences in thresholds to single stimuli. (4) Patients had substantially reduced brain evoked potential amplitudes after both single oesophageal (P1/N1, median values: 7.2 microV, controls: 29.0 microV; N1/P2: 16.5 microV, controls: 66.0 microV; P < 0.001 for both) and skin (N1/P2: 13.5 microV; controls: 76.0 microV; P < 0.001) stimuli despite the similar pain thresholds. CONCLUSION: Central nervous system responses to visceral and somatosensory nociceptive input are altered in patients who have angina despite normal coronary angiograms
    corecore