62 research outputs found

    Resolving Shelf Break Exchange Around the European Northwest Shelf

    Get PDF
    Shelf seas act as a significant sink of carbon within the global ocean. This occurs as carbon is exported beneath the permanent oceanic thermocline through the downwelling circulation across the shelf break. This downwelling circulation is quantified here using two regional ocean model configurations of the European northwest shelf, with differing resolution (7‐ and 1.5‐km grid spacing). The dominant mechanisms and impact of model resolution are assessed along the length of the shelf break. The total downwelling circulation is stronger at higher resolution, due to an increased on‐shelf transport at internal depths (20–150 m) and increased off‐shelf transport at the base of the water column. At internal depths, these differences increase seasonally, influenced by stratification. Key processes in cross‐shelf exchange only begin to be resolved at O(1 km), implying that global models currently used to assess the carbon cycles will be missing these processes

    Feedback of mesoscale ocean currents on atmospheric winds in high-resolution coupled models and implications for the forcing of ocean-only models

    Get PDF
    The repercussions of surface ocean currents for the near-surface wind and the air-sea momentum flux are investigated in two versions of a global climate model with eddying ocean. The focus is on the effect of mesoscale ocean current features at scales of less than 150 km, by considering high-pass filtered, monthly-mean model output fields. We find a clear signature of a mesoscale oceanic imprint in the wind fields over the energetic areas of the oceans, particularly along the extensions of the western boundary currents and the Antarctic Circumpolar Current. These areas are characterized by a positive correlation between mesoscale perturbations in the curl of the surface currents and the wind curl. The coupling coefficients are spatially non-uniform and show a pronounced seasonal cycle. The positive feedback of mesoscale current features on the near-surface wind acts in opposition to their damping effect on the wind stress. A tentative incorporation of this feedback in the surface stress formulation of an eddy-permitting global ocean-only model leads to a gain in the kinetic energy of up to 10 %, suggesting a fundamental shortcoming of present ocean model configurations

    Evaluating surface eddy properties in coupled climate simulations with 'eddy-present' and 'eddy-rich' ocean resolution

    Get PDF
    As climate models move towards higher resolution, their ocean components are now able to explicitly resolve mesoscale eddies. High resolution for ocean models is roughly classified into eddy-present (EP, 1/4°) and eddy-rich (ER, 1/12°) resolution. The cost-benefit of ER resolution over EP resolution remains debated. To inform this discussion, we quantify and compare the surface properties of coherent mesoscale eddies in high-resolution versions of the HadGEM3-GC3.1 coupled climate model, using an eddy tracking algorithm. The modelled properties are compared to altimeter observations. Relative to EP, ER resolution simulates more (+60%) and longer-lasting (+23%) eddies, in better agreement with observations. The representation of eddies in Western Boundary Currents (WBC) and the Southern Ocean compares well with observations at both resolutions. However a common deficiency in the models is the low eddy population in subtropical gyre interiors, which reflects model biases at the Eastern Boundary Upwelling Systems and at the Indonesian outflow, where most of these eddies are generated in observations. Despite a grid spacing larger than the Rossby radius of deformation at high-latitudes, EP resolution does allow for eddy growth in these regions, although at a lower rate than seen in observations and ER resolution. A key finding of our analysis is the large differences in eddy size across the two resolutions and observations: the median speed-based radius increases from 14 km at ER resolution to 32 km at EP resolution, compared with 48 km in observations. It is likely that observed radii are biased high by the effective resolution of the gridded altimeter dataset due to post-processing. Our results highlight the limitations of the altimeter products and the required caution when employed for understanding eddy dynamics and developing eddy parameterizations

    Feedback of mesoscale ocean currents on atmospheric winds in high-resolution coupled models and implications for the forcing of ocean-only models

    Get PDF
    The repercussions of surface ocean currents for the near-surface wind and the air-sea momentum flux are investigated in two versions of a global climate model with eddying ocean. The focus is on the effect of mesoscale ocean current features at scales of less than 150 km, by considering high-pass filtered, monthly-mean model output fields. We find a clear signature of a mesoscale oceanic imprint in the wind fields over the energetic areas of the oceans, particularly along the extensions of the western boundary currents and the Antarctic Circumpolar Current. These areas are characterized by a positive correlation between mesoscale perturbations in the curl of the surface currents and the wind curl. The coupling coefficients are spatially non-uniform and show a pronounced seasonal cycle. The positive feedback of mesoscale current features on the near-surface wind acts in opposition to their damping effect on the wind stress. A tentative incorporation of this feedback in the surface stress formulation of an eddy-permitting global ocean-only model leads to a gain in the kinetic energy of up to 10 %, suggesting a fundamental shortcoming of present ocean model configurations

    Localized general vertical coordinates for quasi‐Eulerian ocean models: The Nordic overflows test‐case

    Get PDF
    A generalized methodology to deploy different types of vertical coordinate system in arbitrarily defined time-invariant local areas of quasi-Eulerian numerical ocean models is presented. After detailing its characteristics, we show how the general localization method can be used to improve the representation of the Nordic Seas overflows in the UK Met Office NEMO-based eddy-permitting global ocean configuration. Three z*-levels with partial steps configurations localizing different types of hybrid geopotential/terrain-following vertical coordinates in the proximity of the Greenland-Scotland ridge are implemented and compared against a control configuration. Experiments include a series of idealized and realistic numerical simulations where the skill of the models in computing pressure forces, reducing spurious diapycnal mixing and reproducing observed properties of the Nordic Seas overflows are assessed. Numerical results prove that the localization approach proposed here can be successfully used to embed terrain-following levels in a global geopotential levels-based configuration, provided that the localized vertical coordinate chosen is flexible enough to allow a smooth transition between the two. In addition, our experiments show that deploying localized terrain-following levels via the multi-envelope method allows the crucial reduction of spurious cross-isopycnal mixing when modeling bottom intensified buoyancy driven currents, significantly improving the realism of the Nordic Seas overflows simulations in comparison to the other configurations. Important hydrographic biases are found to similarly affect all the realistic experiments and a discussion on how their interaction with the type of localized vertical coordinate affects the realism of the simulated overflows is provided

    Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system

    Get PDF
    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control ensemble is integrated from 1 September 2007 to 28 February 2008 and compared with a parallel ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface Atlantic temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010. The experiment is repeated for two atmosphere horizontal resolutions (~ 60 km and ~ 25 km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. A wide range of re-emergence behavior is found within the perturbed ensembles. While the observations seem to indicate that most of the re-emergence is occurring in November, most members of the ensemble show re-emergence occurring later in the winter. However, when re-emergence does occur it is preceded by an atmospheric pressure pattern that induces a strong flow of cold, dry air over the mid-latitude Atlantic, and enhances oceanic latent heat loss. In response to re-emergence (negative SST anomalies), there is reduced latent heat loss, less atmospheric convection, a reduction in eddy kinetic energy and positive low-level pressure anomalies downstream. Within the framework of a seasonal forecast system the results highlight the atmospheric conditions required for re-emergence to take place and the physical processes that may lead to a significant effect on the winter atmospheric circulation
    • 

    corecore