60 research outputs found

    Vascular endothelial release of xanthine oxidoreductase

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Untargeted metabolomic analysis of thoracic blood from badgers indicate changes linked to infection with bovine tuberculosis (Mycobacterium bovis):A pilot study

    Get PDF
    INTRODUCTION: Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB) in cattle, represents a major disease burden to UK cattle farming, with considerable costs associated with its control. The European badger (Meles meles) is a known wildlife reservoir for bTB and better knowledge of the epidemiology of bTB through testing wildlife is required for disease control. Current tests available for the diagnosis of bTB in badgers are limited by cost, processing time or sensitivities. MATERIALS AND METHODS: We assessed the ability of flow infusion electrospray—high-resolution mass spectrometry (FIE-HRMS) to determine potential differences between infected and non-infected badgers based on thoracic blood samples obtained from badgers found dead in Wales. Thoracic blood samples were autoclaved for handling in a containment level 2 (CL2) hazard laboratory. RESULTS: Here we show the major differences associated with with M. bovis infection were changes to folate, pyrimidine, histidine, glycerophospholipid and phosphonate metabolism. CONCLUSIONS: Our studies have indicated differences in the metabolomic signature of badgers found dead in relation to their infection status, suggesting metabolomics could hold potential for developing novel diagnostics for bTB in badgers. As well as highlighting a potential way to handle samples containing a highly pathogenic agent at CL2 for metabolomics studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11306-022-01915-6

    The Faecal Microbiome of the Wild European Badger Meles meles:A Comparison Against Other Wild Omnivorous Mammals from Across the Globe

    Get PDF
    Here we investigate the faecal microbiome of wild European badgers Meles meles using samples collected at post-mortem as part of the All Wales Badger Found Dead study. This is the first published characterisation of the badger microbiome. We initially undertook a sex-matched age comparison between the adult and cub microbiomes, based on sequencing the V3–V4 region of the 16S rRNA gene. Analysis used the QIIME 2 pipeline utilising DADA2 and the Silva database for taxonomy assignment. Fusobacteria appeared to be more abundant in the microbiomes of the cubs than the adults although no significant difference was seen in alpha or beta diversity between the adult and cub badger microbiomes. Comparisons were also made against other wild, omnivorous, mammals’ faecal microbiomes using publicly available data. Significant differences were seen in both alpha and beta diversity between the microbiomes from different species. As a wildlife species of interest to the disease bovine tuberculosis, knowledge of the faecal microbiome could assist in identification of infected badgers. Our work here suggests that, if comparisons were made between the faeces of bTB infected and non-infected badgers, age may not have a significant impact on the microbiome. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00284-022-03064-4

    Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial.

    Get PDF
    Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger

    Field evaluation of specific mycobacterial protein-based skin test for the differentiation of Mycobacterium bovis-infected and Bacillus Calmette Guerin-vaccinated crossbred cattle in Ethiopia

    Get PDF
    Funder: The Defense Science and Technology LaboratoryFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265Funder: Economic and Social Research Council; Id: http://dx.doi.org/10.13039/501100000269Funder: Department for International Development, UK Government; Id: http://dx.doi.org/10.13039/501100000278Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268Bovine tuberculosis (bTB) challenges intensive dairy production in Ethiopia and implementation of the test and slaughter control strategy is not economically acceptable in the country. Vaccination of cattle with Bacillus Calmette-Guerin (BCG) could be an important adjunct to control, which would require a diagnostic test to differentiate Mycobacterium bovis (M. bovis)-infected and BCG-vaccinated animals (DIVA role). This study describes an evaluation of a DIVA skin test (DST) that is based on a cocktail (DSTc) or fusion (DSTf) of specific (ESAT-6, CFP-10 and Rv3615c) M. bovis proteins in Zebu-Holstein-Friesians crossbred cattle in Ethiopia. The study animals used were 74 calves (35 BCG vaccinated and 39 unvaccinated) aged less than 3 weeks at the start of experiment and 68 naturally infected 'TB reactor' cows. Six weeks after vaccination, the 74 calves were tested with the DSTc and the single intradermal cervical comparative tuberculin (SICCT) test. The TB reactor cows were tested with the DSTc and the SICCT test. Reactions to the DSTc were not observed in BCG-vaccinated and unvaccinated calves, while SICCT test reactions were detected in vaccinated calves. DSTc reactions were detected in 95.6% of the TB reactor cows and single intradermal tuberculin positive reactions were found in 98.2% (95% confidence interval, CI, 92.1-100%). The sensitivity of the DSTc was 95.6% (95% CI, 87.6-99.1%), and significantly (p < .001) higher than the sensitivity (75%, 95% CI, 63.0-84.7%) of the SICCT test at 4 mm cut-off. DSTf and DSTc reactions were correlated (r = 0.75; 95% CI = 0.53-0.88). In conclusion, the DSTc could differentiate M. bovis-infected from BCG-vaccinated cattle in Ethiopia. DST had higher sensitivity than the SICCT test. Hence, the DSTc could be used as a diagnostic tool for bTB if BCG vaccination is implemented for the control of bTB in Ethiopia and other countries

    Mutational Analysis Identifies Therapeutic Biomarkers in Inflammatory Bowel Disease-Associated Colorectal Cancers.

    Get PDF
    Purpose: Inflammatory bowel disease-associated colorectal cancers (IBD-CRC) are associated with a higher mortality than sporadic colorectal cancers. The poorly defined molecular pathogenesis of IBD-CRCs limits development of effective prevention, detection, and treatment strategies. We aimed to identify biomarkers using whole-exome sequencing of IBD-CRCs to guide individualized management.Experimental Design: Whole-exome sequencing was performed on 34 formalin-fixed paraffin-embedded primary IBD-CRCs and 31 matched normal lymph nodes. Computational methods were used to identify somatic point mutations, small insertions and deletions, mutational signatures, and somatic copy number alterations. Mismatch repair status was examined.Results: Hypermutation was observed in 27% of IBD-CRCs. All hypermutated cancers were from the proximal colon; all but one of the cancers with hypermutation had defective mismatch repair or somatic mutations in the proofreading domain of DNA POLE Hypermutated IBD-CRCs had increased numbers of predicted neo-epitopes, which could be exploited using immunotherapy. We identified six distinct mutation signatures in IBD-CRCs, three of which corresponded to known mechanisms of mutagenesis. Driver genes were also identified.Conclusions: IBD-CRCs should be evaluated for hypermutation and defective mismatch repair to identify patients with a higher neo-epitope load who may benefit from immunotherapies. Prospective trials are required to determine whether IHC to detect loss of MLH1 expression in dysplastic colonic tissue could identify patients at increased risk of developing IBD-CRC. We identified mutations in genes in IBD-CRCs with hypermutation that might be targeted therapeutically. These approaches would complement and individualize surveillance and treatment programs. Clin Cancer Res; 24(20); 5133-42. ©2018 AACR

    Increased somatic mutation burdens in normal human cells due to defective DNA polymerases.

    Get PDF
    Funder: Wellcome PhD StudentshipFunder: Jean Shank/Pathological Society Intermediate FellowshipFunder: Wellcome Clinical PhD fellowshipMutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life
    • …
    corecore