122 research outputs found

    Discovery Potential for New Phenomena

    Full text link
    We examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. We first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. We then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales. [Summary Report of the New Phenomena Working Group. To appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics - Snowmass96, Snowmass, CO, 25 June - 12 July 1996.]Comment: 18 pages, LaTex2

    Up Sector of Minimal Flavor Violation: Top Quark Properties and Direct D meson CP violation

    Full text link
    Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and DD meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed DD-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.Comment: 27 pages, 7 figure

    More Energy, More Searches, but the pMSSM Lives On

    Full text link
    We further examine the capability of the 7 and 8 TeV LHC to explore the parameter space of the p(henomenological)MSSM with neutralino LSPs. Here we present an updated study employing all of the relevant ATLAS SUSY analyses, as well as all relevant LHC non-MET searches, whose data were publically available as of mid-September 2012. We find that roughly 1/3 of our pMSSM model points are excluded at present with an important role being played by both the heavy flavor and multi-lepton searches, as well as those for heavy stable charged particles. Nonetheless, we find that light gluinos, 1st/2nd generation squarks, and stop/sbottoms (\lsim 400-700 GeV), as well as models with 1% fine-tuning or better, are still viable in the pMSSM. In addition, we see that increased luminosity at 8 TeV is unlikely to significantly improve the reach of the "vanilla" searches. The impact of these null searches on the SUSY sparticle spectrum is discussed in detail and the implications of these results for models with low fine-tuning, a future lepton collider and dark matter searches are examined.Comment: 33 pages, 9 figure

    Zeroing in on Supersymmetric Radiation Amplitude Zeros

    Full text link
    Radiation amplitude zeros have long been used to test the Standard Model. Here, we consider the supersymmetric radiation amplitude zero in chargino-neutralino associated production, which can be observed at the luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino has a large wino fraction and hence this observable can be used to determine the neutralino eigenstate content. We find that this observable can be measured by comparing the p_T spectrum of the softest lepton in the trilepton χ1±χ20\chi_1^\pm \chi_2^0 decay channel to that of a control process such as χ1+χ1−\chi_1^+ \chi_1^- or χ20χ20\chi_2^0 \chi_2^0. We test this technique on a previously generated model sample of the 19 dimensional parameter space of the phenomenological MSSM, and find that it is effective in determining the wino content of the neutralino.Comment: 19 pages, 7 figure

    pMSSM Benchmark Models for Snowmass 2013

    Full text link
    We present several benchmark points in the phenomenological Minimal Supersymmetric Standard Model (pMSSM). We select these models as experimentally well-motivated examples of the MSSM which predict the observed Higgs mass and dark matter relic density while evading the current LHC searches. We also use benchmarks to generate spokes in parameter space by scaling the mass parameters in a manner which keeps the Higgs mass and relic density approximately constant.Comment: 10 pages, 6 figure
    • …
    corecore