182 research outputs found

    Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures

    Get PDF
    Abstract. The orthorhombic and rhombohedral structures of ferroelectric potassium niobate have been determined by neutron diffraction measurements on powdered crystals, using the profile refinement technique to analyse the data. In the orthorhombic phase at 22 "C the atomi

    High-temperature phases of SrZrO 3

    Full text link

    Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory

    Full text link
    The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is generally necessary to distinguish between elastic tensors defined under different electrostatic boundary conditions, and between dielectric tensors defined under different elastic boundary conditions. Here, we describe an approach for computing all of these various response tensors in a unified and systematic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm

    Origin of the large phonon band-gap in SrTiO3 and the vibrational signatures of ferroelectricity in ATiO3 perovskite: First principles lattice dynamics and inelastic neutron scattering of PbTiO3, BaTiO3 and SrTiO3

    Full text link
    We report first principles density functional perturbation theory calculations and inelastic neutron scattering measurements of the phonon density of states, dispersion relations and electromechanical response of PbTiO3, BaTiO3 and SrTiO3. The phonon density-of-states of the quantum paraelectric SrTiO3 is found to be fundamentally distinct from that of ferroelectric PbTiO3 and BaTiO3 with a large 70-90 meV phonon band-gap. The phonon dispersion and electromechanical response of PbTiO3 reveal giant anisotropies. The interplay of covalent bonding and ferroelectricity, strongly modulates the electromechanical response and give rise to spectacular signatures in the phonon spectra. The computed charge densities have been used to study the bonding in these perovskites. Distinct bonding characteristics in the ferroelectric and paraelectric phases give rise to spectacular vibrational signatures. While a large phonon band-gap in ATiO3 perovskites seems a characteristic of quantum paraelectrics, anisotropy of the phonon spectra correlates well with ferroelectric strength. These correlations between the phonon spectra and ferroelectricity, can guide future efforts at custom designing still more effective piezoelectrics for applications. These results suggest that vibrational spectroscopy can help design novel materials.Comment: 11 pages, 4 color figures and 2 Table

    Semiempirical Hartree-Fock calculations for KNbO3

    Full text link
    In applying the semiempirical intermediate neglect of differential overlap (INDO) method based on the Hartree-Fock formalism to a cubic perovskite-based ferroelectric material KNbO3, it was demonstrated that the accuracy of the method is sufficient for adequately describing the small energy differences related to the ferroelectric instability. The choice of INDO parameters has been done for a system containing Nb. Based on the parametrization proposed, the electronic structure, equilibrium ground state structure of the orthorhombic and rhombohedral phases, and Gamma-TO phonon frequencies in cubic and rhombohedral phases of KNbO3 were calculated and found to be in good agreement with the experimental data and with the first-principles calculations available.Comment: 7 pages, 2 Postscript figures, uses psfig.tex. To be published in Phys.Rev.B 54, No.4 (1996

    Born Effective Charges of Barium Titanate: band by band decomposition and sensitivity to structural features

    Full text link
    The Born effective charge tensors of Barium Titanate have been calculated for each of its 4 phases. Large effective charges of Ti and O, also predicted by shell model calculations and made plausible by a simplified model, reflect the partial covalent character of the chemical bond. A band by band decomposition confirms that orbital hybridization is not restricted to Ti and O atoms but also involves Ba which appears more covalent than generally assumed. Our calculations reveal a strong dependence of the effective charges on the atomic positions contrasting with a relative insensitivity on isotropic volume changes.Comment: 13 page

    Polarization Dependence of Born Effective Charge and Dielectric Constant in KNbO3_3

    Full text link
    The Born effective charge Z^{*} and dielectric tensor \epsilon_{\infty} of KNbO_3 are found to be very sensitive to the atomic geometry, changing by as much as 27% between the paraelectric cubic and ferroelectric tetragonal and rhombohedral phases. Subtracting the bare ionic contribution reveals changes of the dynamic component of Z^{*} as large as 50%, for atomic displacements that are typically only a few percent of the lattice constant. Z^{*}, \epsilon_{\infty} and all phonon frequencies at the Brillouin zone center were calculated using the {\it ab initio} linearized augmented plane-wave linear response method with respect to the reference cubic, experimental tetragonal, and theoretically determined rhombohedral ground state structures. The ground state rhombohedral structure of KNbO_3 was determined by minimizing the forces on the relaxed atoms. By contrast with the cubic structure, all zone center phonon modes of the rhombohedral structure are stable and their frequencies are in good agreement with experiment. In the tetragonal phase, one of the soft zone center modes in the cubic phase is stablized. In view of the small atomic displacements involved in the ferroelectric transitions, it is evident that not only the soft mode frequencies but also the Born effective charge and dielectric constants are very sensitive to the atomic geometry.Comment: 26 pages, revtex, no figures; to appear in Phys. Rev. B15 (Oct.), 199

    Phonon Properties of Knbo3 and Ktao3 from First-Principles Calculations

    Full text link
    The frequencies of transverse-optical Γ\Gamma phonons in KNbO3_3 and KTaO3_3 are calculated in the frozen-phonon scheme making use of the full-potential linearized muffin-tin orbital method. The calculated frequencies in the cubic phase of KNbO3_3 and in the tetragonal ferroelectric phase are in good agreement with experimental data. For KTaO3_3, the effect of lattice volume was found to be substantial on the frequency of the soft mode, but rather small on the relative displacement patterns of atoms in all three modes of the T1uT_{1u} symmetry. The TO frequencies in KTaO3_3 are found to be of the order of, but somehow higher than, the corresponding frequencies in cubic KNbO3_3.Comment: 8 pages + 1 LaTeX figure, Revtex 3.0, SISSA-CM-94-00

    Dynamic force microscopy for imaging of viruses under physiological conditions

    Get PDF
    Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized

    The physics of dynamical atomic charges: the case of ABO3 compounds

    Full text link
    Based on recent first-principles computations in perovskite compounds, especially BaTiO3, we examine the significance of the Born effective charge concept and contrast it with other atomic charge definitions, either static (Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static and dynamical charges are not driven by the same underlying parameters. A unified treatment of dynamical charges in periodic solids and large clusters is proposed. The origin of the difference between static and dynamical charges is discussed in terms of local polarizability and delocalized transfers of charge: local models succeed in reproducing anomalous effective charges thanks to large atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor the physical picture based upon transfer of charges. Various results concerning barium and strontium titanates are presented. The origin of anomalous Born effective charges is discussed thanks to a band-by-band decomposition which allows to identify the displacement of the Wannier center of separated bands induced by an atomic displacement. The sensitivity of the Born effective charges to microscopic and macroscopic strains is examined. Finally, we estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe
    • …
    corecore