18 research outputs found

    Expression Profiling of CYP1B1 in Oral Squamous Cell Carcinoma: Counterintuitive Downregulation in Tumors

    Get PDF
    Oral Squamous Cell Carcinoma (OSCC) has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy. CYP1B1, a member of cytochrome P450 family, has been implicated in chemical carcinogenesis. There exists a general accordance that this protein is overexpressed in a variety of cancers, making it an ideal candidate for a prodrug therapy. The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits. This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This report therefore clearly demonstrates the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers and also suggest the possibility of a prophylactic therapy for oral cancer

    Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis.

    No full text
    BACKGROUNDCurrent non-invasive diagnostic methods for endometriosis lack sensitivity and specificity. In search for new diagnostic biomarkers for ovarian endometriosis, we used a hypothesis-generating targeted metabolomics approach.METHODSIn a case-control study, we collected plasma of study participants and analysed their metabolic profiles. We selected a group of 40 patients with ovarian endometriosis who underwent laparoscopic surgery and a control group of 52 healthy women who underwent sterilization at the University Clinical Centre Ljubljana, Slovenia. Over 140 targeted analytes included glycerophospholipids, sphingolipids and acylcarnitines. The analytes were quantified by electrospray ionization tandem mass spectrometry. For assessing the strength of association between the metabolite or metabolite ratios and the disease, we used crude and adjusted odds ratios. A stepwise logistic regression procedure was used for selecting the best combination of biomarkers.RESULTSEight lipid metabolites were identified as endometriosis-associated biomarkers due to elevated levels in patients compared with controls. A model containing hydroxysphingomyelin SMOH C16:1 and the ratio between phosphatidylcholine PCaa C36:2 to ether-phospholipid PCae C34:2, adjusted for the effect of age and the BMI, resulted in a sensitivity of 90.0%, a specificity of 84.3% and a ratio of the positive likelihood ratio to the negative likelihood ratio of 48.3.CONCLUSIONSOur results suggest that endometriosis is associated with elevated levels of sphingomyelins and phosphatidylcholines, which might contribute to the suppression of apoptosis and affect lipid-associated signalling pathways. Our findings suggest novel potential routes for therapy by specifically blocking highly up-regulated isoforms of phosphpolipase A2 and lysophosphatidylcholine acyltransferase 4
    corecore