685 research outputs found

    Results of ultra-low level 71ge counting for application in the Gallex-solar neutrino experiment at the Gran Sasso Underground Physics Laboratory

    Get PDF
    It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation

    Neutralizing monoclonal antibodies define two different functional sites in human interleukin-4

    Get PDF
    Human interleukin-4 (IL-4) is a small four-helix-bundle protein which is essential for organizing defense reactions against macroparasites, in particular helminths. Human IL-4 also appears to exert a pathophysiological role during various IgE-mediated allergic diseases. Seven different monoclonal antibodies neutralizing the activity of human IL-4 were studied in order to identify functionally important epitopes. A collection of 41 purified IL-4 variants was used to analyse how defined amino acid replacements affect binding affinity for each individual mAb. Specific amino acid positions could be assigned to four different epitopes. mAbs recognizing epitopes on helix A and/or C interfered with IL-4 receptor binding and thus inhibited IL-4 function. However, other mAbs also inhibiting IL-4 function recognized an epitope on helix D of IL-4 and did not inhibit IL-4 binding to the receptor protein. One mAb, recognizing N-terminal and C-terminal residues, partially competed for binding to the receptor. The results of these mAb epitope analyses confirm and extend previous data on the functional consequences of the amino acid replacements which showed that amino acid residues in helices A and C of IL-4 provide a binding site for the cloned IL-4 receptor and that a signalling site in helix D interacts with a further receptor protein

    Wave reflection, assessed by use of the ARCSolver Algorithm for pulse wave separation, is reduced under acute µg conditions in parabolic flight

    Get PDF
    Weightlessness during long-term space flight over 6-12 months leads to complex individual cardiovascular adaptation. The initial central blood volume expansion followed by a loss of plasma volume is accompanied by changes in vascular mechanoreceptor loads and responsive-ness, altered autonomic reflex control of heart rate and blood pressure, and hormonal changes in the long run. Hence, function and structure of the heart and blood vessels may change. Hemodynamic data obtained during short- and long-term space flight may indicate that the adaptation process resembles ageing of the cardiovascular system characterized by decreased diastolic blood pressure, increased central sympathetic nerve traffic and increased arterial pulse wave velocity. Experiments during parabolic flights in supine position suggest, that stroke volume does not change during transitions between µ-g and 1-g. We tested a novel method of pulse wave separation based on simple oscillometric brachial cuff waveform reading to investigate pulse wave reflection during acute weightlessness in healthy subjects. We hypothesized that the wave reflection magnitude (RM) remains unaltered during parabolic flights in supine position

    On the relation between Differential Privacy and Quantitative Information Flow

    Get PDF
    Differential privacy is a notion that has emerged in the community of statistical databases, as a response to the problem of protecting the privacy of the database's participants when performing statistical queries. The idea is that a randomized query satisfies differential privacy if the likelihood of obtaining a certain answer for a database xx is not too different from the likelihood of obtaining the same answer on adjacent databases, i.e. databases which differ from xx for only one individual. Information flow is an area of Security concerned with the problem of controlling the leakage of confidential information in programs and protocols. Nowadays, one of the most established approaches to quantify and to reason about leakage is based on the R\'enyi min entropy version of information theory. In this paper, we analyze critically the notion of differential privacy in light of the conceptual framework provided by the R\'enyi min information theory. We show that there is a close relation between differential privacy and leakage, due to the graph symmetries induced by the adjacency relation. Furthermore, we consider the utility of the randomized answer, which measures its expected degree of accuracy. We focus on certain kinds of utility functions called "binary", which have a close correspondence with the R\'enyi min mutual information. Again, it turns out that there can be a tight correspondence between differential privacy and utility, depending on the symmetries induced by the adjacency relation and by the query. Depending on these symmetries we can also build an optimal-utility randomization mechanism while preserving the required level of differential privacy. Our main contribution is a study of the kind of structures that can be induced by the adjacency relation and the query, and how to use them to derive bounds on the leakage and achieve the optimal utility

    Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project

    Get PDF
    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fuer Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    Nuclear recoil measurements in Superheated Superconducting Granule detectors

    Full text link
    The response of Superheated Superconducting Granule (SSG) devices to nuclear recoils has been explored by irradiating SSG detectors with a 70Me ⁣\!V neutron beam. In the past we have tested Al SSG and more recently, measurements have been performed with Sn and Zn detectors. The aim of the experiments was to test the sensitivity of SSG detectors to recoil energies down to a few ke ⁣\!V. In this paper, the preliminary results of the neutron irradiation of a SSG detector made of Sn granules 15-20μ\mum in diameter will be discussed. For the first time, recoil energy thresholds of \sim1ke ⁣\!V have been measured.Comment: 7pages in Latex format, Preprint Bu-He 93/6 (University of Berne, Switzerland), four figures available upon request via [email protected] or [email protected]

    Slow breathing reduces sympathoexcitation in COPD

    Get PDF
    Neurohumoral activation has been shown to be present in hypoxic patients with chronic obstructive pulmonary disease (COPD). The aims of the present study were to investigate whether there is sympathetic activation in COPD patients in the absence of hypoxia and whether slow breathing has an impact on sympathoexcitation and baroreflex sensitivity. Efferent muscle sympathetic nerve activity, blood pressure, cardiac frequency and respiratory movements were continuously measured in 15 COPD patients and 15 healthy control subjects. Baroreflex sensitivity was analysed by autoregressive spectral analysis and the alpha-angle method. At baseline, sympathetic nerve activity was significantly elevated in COPD patients and baroreflex sensitivity was decreased (5.0+/-0.6 versus 8.9+/-0.8 ms.mmHg(-1)). Breathing at a rate of 6 breaths.min(-1) caused sympathetic activity to drop significantly in COPD patients (from 61.3+/-4.6 to 53.0+/-4.3 bursts per 100 heartbeats) but not in control subjects (39.2+/-3.2 versus 37.5+/-3.3 bursts per 100 heartbeats). In both groups, slow breathing significantly enhanced baroreflex sensitivity. In conclusion, sympathovagal imbalance is present in normoxic chronic obstructive pulmonary disease patients. The possibility of modifying these changes by slow breathing may help to better understand and influence this systemic disease

    LeakWatch: Estimating Information Leakage from Java Programs

    Get PDF
    Abstract. Programs that process secret data may inadvertently reveal information about those secrets in their publicly-observable output. This paper presents LeakWatch, a quantitative information leakage analysis tool for the Java programming language; it is based on a flexible “point-to-point ” information leakage model, where secret and publiclyobservable data may occur at any time during a program’s execution. LeakWatch repeatedly executes a Java program containing both secret and publicly-observable data and uses robust statistical techniques to provide estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result presented in this paper) and mutual information. We demonstrate how LeakWatch can be used to estimate the size of information leaks in a range of real-world Java programs

    Beryllium-7 analyses in seawater by low background gamma-spectroscopy

    Get PDF
    Author Posting. © Akadémiai Kiadó, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 277 (2008): 253-259, doi:10.1007/s10967-008-0739-y.7Be is a cosmogenic isotope produced in the stratosphere and troposphere. 7Be has a half-life of 53.4 days and decays to 7Li emitting a 477 keV gamma line with a branching ratio of 0.104. It is predominantly washed out of the atmosphere through wet deposition. It is a tool for oceanographers to study air sea interaction and water mass mixing. Beryllium’s largely non-reactive nature in the open ocean makes it an excellent conservative tracer. Its conservative nature and extreme dilution in seawater also makes it difficult to concentrate and analyze. Early experiments at WHOI with Fe(OH)3 cartridges to directly collect 7Be by insitu underwater pumps proved ineffective. Collection efficiencies of the cartridges were too low to be consistently useful. At sea chemistry of whole water samples became the method of choice. The use of stable 9Be as a yield monitor further improved the accuracy of the procedure. The method was optimized at WHOI in 2005 using a seawater line that enters WHOI’s coastal research lab. The procedure was then used on an oceanographic cruise on the R/V Oceanus out of Bermuda in the oligotrophic Sargasso Sea.The authors would like to thank DOE, ONR and NSF for funding of this research
    corecore