7 research outputs found

    Beyond the Heisenberg time: Semiclassical treatment of spectral correlations in chaotic systems with spin 1/2

    Full text link
    The two-point correlation function of chaotic systems with spin 1/2 is evaluated using periodic orbits. The spectral form factor for all times thus becomes accessible. Equivalence with the predictions of random matrix theory for the Gaussian symplectic ensemble is demonstrated. A duality between the underlying generating functions of the orthogonal and symplectic symmetry classes is semiclassically established

    Semiclassical spectral correlator in quasi one-dimensional systems

    Full text link
    We investigate the spectral statistics of chaotic quasi one dimensional systems such as long wires. To do so we represent the spectral correlation function R(ϵ)R(\epsilon) through derivatives of a generating function and semiclassically approximate the latter in terms of periodic orbits. In contrast to previous work we obtain both non-oscillatory and oscillatory contributions to the correlation function. Both types of contributions are evaluated to leading order in 1/ϵ1/\epsilon for systems with and without time-reversal invariance. Our results agree with expressions from the theory of disordered systems.Comment: 10 pages, no figure

    Periodic-orbit theory of universal level correlations in quantum chaos

    Full text link
    Using Gutzwiller's semiclassical periodic-orbit theory we demonstrate universal behaviour of the two-point correlator of the density of levels for quantum systems whose classical limit is fully chaotic. We go beyond previous work in establishing the full correlator such that its Fourier transform, the spectral form factor, is determined for all times, below and above the Heisenberg time. We cover dynamics with and without time reversal invariance (from the orthogonal and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit expansion in terms of a matrix integral, like the one known from the sigma model of random-matrix theory.Comment: 44 pages, 11 figures, changed title; final version published in New J. Phys. + additional appendices B-F not included in the journal versio

    On determination of statistical properties of spectra from parametric level dynamics

    Full text link
    We analyze an approach aiming at determining statistical properties of spectra of time-periodic quantum chaotic system based on the parameter dynamics of their quasienergies. In particular we show that application of the methods of statistical physics, proposed previously in the literature, taking into account appropriate integrals of motion of the parametric dynamics is fully justified, even if the used integrals of motion do not determine the invariant manifold in a unique way. The indetermination of the manifold is removed by applying Dirac's theory of constrained Hamiltonian systems and imposing appropriate primary, first-class constraints and a gauge transformation generated by them in the standard way. The obtained results close the gap in the whole reasoning aiming at understanding statistical properties of spectra in terms of parametric dynamics.Comment: 9 pages without figure

    Semiclassical Theory for Universality in Quantum Chaos with Symmetry Crossover

    Full text link
    We address the quantum-classical correspondence for chaotic systems with a crossover between symmetry classes. We consider the energy level statistics of a classically chaotic system in a weak magnetic field. The generating function of spectral correlations is calculated by using the semiclassical periodic-orbit theory. An explicit calculation up to the second order, including the non-oscillatory and oscillatory terms, agrees with the prediction of random matrix theory. Formal expressions of the higher order terms are also presented. The nonlinear sigma (NLS) model of random matrix theory, in the variant of the Bosonic replica trick, is also analyzed for the crossover between the Gaussian orthogonal ensemble and Gaussian unitary ensemble. The diagrammatic expansion of the NLS model is interpreted in terms of the periodic orbit theory.Comment: 25 pages, 4 figures, 1 tabl

    Semiclassical approach to discrete symmetries in quantum chaos

    Full text link
    We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscillatory contributions.Comment: 26 pages, 8 Figure
    corecore