17 research outputs found
Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro
Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion.
4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged.
In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride.
It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane
Probing Endocytosis during the cell cycle with minimal experimental perturbation
Endocytosis mediates the cellular uptake of nutrients, modulates signaling by regulating levels of cell surface receptors, and is usurped by pathogens during infection. Endocytosis activity is known to vary during the cell cycle, in particular during mitosis. Importantly, different experimental conditions can lead to opposite results and conclusions, thereby emphasizing the need for a careful design of protocols. For example, experiments using serum-starvation, ice-cold steps or using mitotic arrest produced by chemicals widely used to synchronize cells (nocodazole, RO-3306, or S-trityl-L-cysteine) induce a blockage of clathrin-mediated endocytosis during mitosis not observed in unperturbed, dividing cells. In addition, perturbations produced by mRNA interference or dominant-negative mutant overexpression affect endocytosis long before cells are being assayed. Here, we describe simple experimental procedures to assay endocytosis along the cell cycle with minimal perturbations