775 research outputs found

    Laser power stabilization for second-generation gravitational wave detectors

    Get PDF
    We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5×10−9 Hz−1/2 at 10 Hz and 3.5×10−9 Hz−1/2 up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector

    The GEO 600 laser system

    Get PDF
    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAGNd:YVO4 system is scaled to more than 22 W

    Homodyne locking of a squeezer

    Full text link
    We report on the successful implementation of a new approach to locking the frequencies of an OPO-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase-shifts induced by a cavity, which may be used for the purposes of frequency-locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement and has the distinct advantage that subsequent homodyne measurements are automatically phase-locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.Comment: Accepted to Optics Letter

    Multiplexed communication over a high-speed quantum channel

    Get PDF
    In quantum information systems it is of particular interest to consider the best way in which to use the non-classical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are amongst the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analogue bandwidth. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4 GHz comb of vacuum squeezing produced by a sub-threshold OPO, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel

    High-precision cavity spectroscopy using high-frequency squeezed light

    Get PDF

    Lightweight metasurface mirror of silicon nanospheres [Invited]

    Get PDF

    Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector

    Get PDF
    We present a novel method to fully estimate Gaussian bipartite polarization states using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett. 102, 020502 (2009)], but circumvents additional optics, and thereby losses, in the signal path. We provide an intuitive explanation of our scheme without needing to define auxiliary modes. With six independent measurements, we fully reconstruct the state’s covariance matrix. We validate our method by comparing it to a conventional dual-homodyne measurement scheme

    Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN ≤ 4×10-9/surdHz) will be presented

    Frequency-Dependent Squeezing from a Detuned Squeezer

    Get PDF

    Intensity and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation

    Get PDF
    We have shown that pump light intensity stabilisation of a single-mode laser diode pumped Nd:YAG non-planar ring oscillator (NPRO) results in significant intensity noise reduction of the NPRO, as well as frequency noise suppression in the same order of magnitude. This effect does not occur in conventional laser diode array pumped NPROs due to mode beating effects originating in the multi-mode pump. As opposed to individual intensity and frequency stabilisation, pump light stabilisation contributes a simplified stabilisation scheme for single-mode laser diode pumped NPROs for high precision applications
    • …
    corecore