16 research outputs found

    Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: a double-blinded, randomised, sham-controlled pilot study

    Full text link
    BACKGROUND: For every day a person is dependent on mechanical ventilation, respiratory and cardiac complications increase, quality of life decreases and costs increase by > $USD 1500. Interventions that improve respiratory muscle function during mechanical ventilation can reduce ventilation duration. The aim of this pilot study was to assess the feasibility of employing an abdominal functional electrical stimulation (abdominal FES) training program with critically ill mechanically ventilated patients. We also investigated the effect of abdominal FES on respiratory muscle atrophy, mechanical ventilation duration and intensive care unit (ICU) length of stay. METHODS: Twenty critically ill mechanically ventilated participants were recruited over a 6-month period from one metropolitan teaching hospital. They were randomly assigned to receive active or sham (control) abdominal FES for 30 min, twice per day, 5 days per week, until ICU discharge. Feasibility was assessed through participant compliance to stimulation sessions. Abdominal and diaphragm muscle thickness were measured using ultrasound 3 times in the first week, and weekly thereafter by a blinded assessor. Respiratory function was recorded when the participant could first breathe independently and at ICU discharge, with ventilation duration and ICU length of stay also recorded at ICU discharge by a blinded assessor. RESULTS: Fourteen of 20 participants survived to ICU discharge (8, intervention; 6, control). One control was transferred before extubation, while one withdrew consent and one was withdrawn for staff safety after extubation. Median compliance to stimulation sessions was 92.1% (IQR 5.77%) in the intervention group, and 97.2% (IQR 7.40%) in the control group (p = 0.384). While this pilot study is not adequately powered to make an accurate statistical conclusion, there appeared to be no between-group thickness changes of the rectus abdominis (p = 0.099 at day 3), diaphragm (p = 0.652 at day 3) or combined lateral abdominal muscles (p = 0.074 at day 3). However, ICU length of stay (p = 0.011) and ventilation duration (p = 0.039) appeared to be shorter in the intervention compared to the control group. CONCLUSIONS: Our compliance rates demonstrate the feasibility of using abdominal FES with critically ill mechanically ventilated patients. While abdominal FES did not lead to differences in abdominal muscle or diaphragm thickness, it may be an effective method to reduce ventilation duration and ICU length of stay in this patient group. A fully powered study into this effect is warranted. TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry, ACTRN12617001180303. Registered 9 August 2017

    Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema

    Get PDF
    BACKGROUND: Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. METHODS: We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. RESULTS: In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. CONCLUSION: This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans

    Lung- and diaphragm-protective ventilation by titrating inspiratory support to diaphragm effort: a randomized clinical trial

    No full text
    OBJECTIVES: Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined “diaphragm-protective” range, without compromising lung-protective ventilation. DESIGN: Randomized clinical trial. SETTING: Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS: Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS: In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined “diaphragm-protective” range (3–12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS: Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within “diaphragm-protective” range compared with the control group (median 81%; interquartile range [64–86%] vs 35% [16–60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS: Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined “diaphragm-protective” range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes

    The impact of lung ultrasound on clinical-decision making across departments: a systematic review

    No full text
    Background Lung ultrasound has established itself as an accurate diagnostic tool in different clinical settings. However, its effects on clinical-decision making are insufficiently described. This systematic review aims to investigate the impact of lung ultrasound, exclusively or as part of an integrated thoracic ultrasound examination, on clinical-decision making in different departments, especially the emergency department (ED), intensive care unit (ICU), and general ward (GW). Methods This systematic review was registered at PROSPERO (CRD42021242977). PubMed, EMBASE, and Web of Science were searched for original studies reporting changes in clinical-decision making (e.g. diagnosis, management, or therapy) after using lung ultrasound. Inclusion criteria were a recorded change of management (in percentage of cases) and with a clinical presentation to the ED, ICU, or GW. Studies were excluded if examinations were beyond the scope of thoracic ultrasound or to guide procedures. Mean changes with range (%) in clinical-decision making were reported. Methodological data on lung ultrasound were also collected. Study quality was scored using the Newcastle–Ottawa scale. Results A total of 13 studies were included: five studies on the ED (546 patients), five studies on the ICU (504 patients), two studies on the GW (1150 patients), and one study across all three wards (41 patients). Lung ultrasound changed the diagnosis in mean 33% (15–44%) and 44% (34–58%) of patients in the ED and ICU, respectively. Lung ultrasound changed the management in mean 48% (20–80%), 42% (30–68%) and 48% (48–48%) of patients in the ED, in the ICU and in the GW, respectively. Changes in management were non-invasive in 92% and 51% of patients in the ED and ICU, respectively. Lung ultrasound methodology was heterogeneous across studies. Risk of bias was moderate to high in all studies. Conclusions Lung ultrasound, exclusively or as a part of thoracic ultrasound, has substantial impact on clinical-decision making by changing diagnosis and management in the EDs, ICUs, and GWs. The current evidence level and methodological heterogeneity underline the necessity for well-designed trials and standardization of methodology

    Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill

    No full text
    RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity, duration of hospital stay and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES: We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function, structure, and increased markers of oxidative stress. METHODS: To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of thirty-six mechanically ventilated critically ill patients and compared to those isolated from biopsies of twenty-seven patients with suspected early-stage lung malignancy (controls). MEASUREMENTS AND MAIN RESULTS: Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS: Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness, in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients

    Breath-synchronized electrical stimulation of the expiratory muscles in mechanically ventilated patients: a randomized controlled feasibility study and pooled analysis

    Full text link
    Background: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population (“Holland study”) and pooled data with our previous work (“Australian study”) to estimate potential clinical effects in a larger group. Methods: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. Results: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6–12.2] versus 10.5 [5.3–25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0–14.5] versus 14.0 [9.0–19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). Conclusion: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. Trial registration: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944
    corecore