84 research outputs found

    Physiological responses to increased dietary cholesterol: The case of the egg man

    Full text link
    An 88-yr-old man carrying the tentative diagnosis of Alzheimer's disease had a documented history of ingesting 20 to 30 eggs/day for approximately 15 yr. His psychiatrist characterized his eating habits as a compulsive disorder:“Eating these eggs ruins my life, but I can't help it.” He is in excellent health. His weight is constant at 82 to 86 kg (height 1.87 m). Apparently, he had a mild episode of angina. Otherwise, no significant history of stroke, heart disease or gallbladder disease was seen. His serum cholesterol levels have ranged between 150 and 200 mg/dl.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38369/1/1840140653_ftp.pd

    Region 11 MELD Na Exception Prospective Study

    Get PDF
    Introduction. Hyponatremia complicates cirrhosis and predicts short term mortality, including adverse outcomes before and after liver transplantation. Material and methods. From April 1, 2008, through April 2, 2010, all adult candidates for primary liver transplantation with cirrhosis, listed in Region 11 with hyponatremia, were eligible for sodium (Na) exception. Results. Patients with serum sodium (SNa) less than 130 mg/dL, measured two weeks apart and within 30 days of Model for End Stage Liver Disease (MELD) exception request, were given preapproved Na exception. MELD Na was calculated [MELD + 1.59 (135-SNa/30 days)]. MELD Na was capped at 22, and subject to standard adult recertification schedule. On data end of follow-up, December 28, 2010, 15,285 potential U.S. liver recipients met the inclusion criteria of true MELD between 6 and 22. In Region 11, 1,198 of total eligible liver recipients were listed. Sixty-two (5.2%) patients were eligible for Na exception (MELD Na); 823 patients (68.7%) were listed with standard MELD (SMELD); and 313 patients (26.1%) received HCC MELD exception. Ninety percent of MELD Na patients and 97% of HCC MELD patients were transplanted at end of follow up, compared to 49% of Region 11 standard MELD and 40% of U.S.A. standard MELD (USA MELD) patients (p \u3c 0.001); with comparable dropout rates (6.5, 1.6, 6.9, 9% respectively; p = 0.2). MELD Na, HCC MELD, Region 11 SMELD, and USA MELD post-transplant six-month actual patient survivals were similar (92.9, 92.8, 92.2, and 93.9 %, respectively). Conclusion. The Region 11 MELD Na exception prospective trial improved hyponatremic cirrhotic patient access to transplant equitably, and without compromising transplant efficacy

    Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy

    Get PDF
    Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE. Methods Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin. Results There was a significant improvement in cognition(six of seven tests improved,pVeillonellaceaeand increase inEubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered onEnterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar. Conclusions Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance. Trial Registration ClinicalTrials.gov NCT0106913

    Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition

    Get PDF
    Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin
    corecore