80 research outputs found

    All-Optical Switching in Photonic Crystal Cavities

    Get PDF

    Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies

    Get PDF
    Current proposals for scalable photonic quantum technologies require on-demand sources of indistinguishable single photons with very high efficiency (having unheralded loss below 1%1\%). Even with recent progress in the field there is still a significant gap between the requirements and state of the art performance. Here, we propose an on-chip source of multiplexed, heralded photons. Using quantum feedback control on a photon storage cavity with an optimized driving protocol, we estimate an on-demand efficiency of 99%99\% and unheralded loss of order 1%1\%, assuming high efficiency detectors and intrinsic cavity quality factors of order 10810^8. We further explain how temporal- and frequency-multiplexing can be used in parallel to significantly reduce device requirements if single photon frequency conversion is possible with efficiency in the same range of 99%99\%

    Photon-Photon Interactions in Dynamically Coupled Cavities

    Full text link
    We study theoretically the interaction between two photons in a nonlinear cavity. The photons are loaded into the cavity via a method we propose here, in which the input/output coupling of the cavity is effectively controlled via a tunable coupling to a second cavity mode that is itself strongly output-coupled. Incoming photon wave packets can be loaded into the cavity with high fidelity when the timescale of the control is smaller than the duration of the wave packets. Dynamically coupled cavities can be used to avoid limitations in the photon-photon interaction time set by the delay-bandwidth product of passive cavities. Additionally, they enable the elimination of wave packet distortions caused by dispersive cavity transmission and reflection. We consider three kinds of nonlinearities, those arising from χ(2)\chi^{\scriptscriptstyle(2)} and χ(3)\chi^{\scriptscriptstyle(3)} materials and that due to an interaction with a two-level emitter. To analyze the input and output of few-photon wave packets we use a Schr\"odinger-picture formalism in which travelling-wave fields are discretized into infinitesimal time-bins. We suggest that dynamically coupled cavities provide a very useful tool for improving the performance of quantum devices relying on cavity-enhanced light-matter interactions such as single-photon sources and atom-like quantum memories with photon interfaces. As an example, we present simulation results showing that high fidelity two-qubit entangling gates may be constructed using any of the considered nonlinear interactions

    Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    Get PDF
    United States. Air Force Office of Scientific Research (FA8750-13-2-0120

    On the theory of coupled modes in optical cavity-waveguide structures

    Get PDF
    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavity-waveguide structures, which explicitly relies on the treatment of the cavity modes as quasinormal modes with properties that are distinctly different from those of the modes in the waveguides. The two families of modes are coupled via the field equivalence principle to provide a physically appealing yet surprisingly accurate description of light propagation in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions.Comment: 14 pages, 9 figure

    Self-pulsing dynamics in microscopic lasers with dispersive mirrors

    Full text link
    We show that a passive dispersive reflector integrated into a semiconductor laser can be used to tailor the laser dynamics for the generation of ultrashort pulses as well as stable dual-mode lasing. We analyze the stability using a general model that applies to any laser with frequency-dependent mirror losses. Finally, we present a generalization of the Fano laser concept, which provides a flexible platform for tailoring the mirror dispersion for self-pulsing. In addition to functioning as a design guideline, our model also accounts for several results in the literature.Comment: 12 pages, 5 figure
    • …
    corecore