63 research outputs found

    Accuracy of Conventional Radiography and Computed Tomography in Predicting Implant Position in Relation to the Vertebral Canal in Dogs

    Get PDF
    Vertebral column stabilization is performed for dogs suffering from instability secondary to trauma, neoplasia, caudal cervical spondylomyelopathy, infection and other. A common stabilizing technique involves bicortical placement of positive profile end-threaded Steinman pins into the vertebral body and pedicles. Bicortical placement of these pins carries a high risk for iatrogenic trauma of important neurovascular structures. A clinical frustration has been the difficulty determining exact implant position based on postoperative conventional spinal survey radiographs. Implant position within the vertebral column may be better determined using a different imaging modality such as computed tomography as this would allow for evaluation of tissues in different anatomic planes. The goal of this study was to compare the accuracy of radiography and computed tomography in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column in an in vitro imaging and anatomic study. Twelve medium-sized canine cadaver vertebral columns were utilized for this study. Steinman pins were placed into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT exams were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability of the examiner to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. Results revealed a left/right accuracy of 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P < 0.0001). Sensitivity was significantly higher for complete vs. partial penetration and for radiologists vs. non-radiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P = 0.049). In conclusion, CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. The clinical relevance of this finding is that CT is significantly more accurate in identifying vertebral canal violation by Steinman pins and should be performed postoperatively to assess implant position

    Accuracy of end-on fluoroscopy in predicting implant position in relation to the vertebral canal in dogs.

    Get PDF
    Objective To evaluate the accuracy of end-on fluoroscopy in predicting implant position in relation to the vertebral canal in the canine thoracolumbar vertebral column. Study design In vitro imaging and anatomic study. Animals Canine cadaveric thoracolumbar vertebral columns (n = 5). Methods Smooth Steinmann pins were inserted bicortically into the thoracolumbar vertebral columns between T10 and L7 using recommended insertion angles. Penetration of the spinal canal was not strictly avoided. After pin placement, end-on fluoroscopy images were obtained of each pin. Pin position was subsequently assessed by four evaluators and determined to either being out of the vertebral canal or in, with the latter being additionally divided into partially or completely penetrating the canal. To assess potential differences in modalities, fluoroscopy images were gray-scale inverted and evaluated again later by the same four individuals. Correct identification of pin position in relationship to the vertebral canal was assessed for both fluoroscopy images. Anatomic preparation of the spines was used for verification of pin position in relation to the spinal canal. Some data from this study were compared with historical data on accuracy using orthogonal radiography and computed tomography (CT). Results Overall sensitivity and specificity of F to detect vertebral canal penetration was 98.8 % (95% confidence interval (CI), 96.0-99.6) and 98.0% (95% CI, 77.0-99.9), respectively. For Fi, sensitivity and specificity were 97.0% (95% CI, 91.5-99.0) and 98.5% (95% CI, 81.5-99.9) respectively. F exceeded Fi for the sensitivity of detecting pin penetration into the vertebral canal (p = 0.039) but specificities were not different (p = 0.585). When comparing to historical data, the overall accuracy of end-on fluoroscopy (F) and inverted fluoroscopy (Fi) was statistical better than conventional radiographic assessment (p < 0.001). Conclusion End-on fluoroscopy is a highly accurate method for the assessment of pin position in relationship to the thoracolumbar spinal canal in cadaveric dogs. Clinical significance End-on fluoroscopy, with or without inversion, is accurate in identifying vertebral canal violation by bicortically placed Steinmann pins. When CT is not available, end-on fluoroscopy might be a valuable imaging modality to determine pin position in the canine vertebral column

    Kinetics of Plasma Cytokines, Angiopoietin-2, and C-Reactive Protein in Dogs With Gastric Dilatation Volvulus.

    Get PDF
    Background: The degree of systemic inflammation, reperfusion injury and endothelial activation are potentially important determinants of clinical outcomes in dogs with gastric dilatation volvulus (GDV). Objective: To evaluate plasma concentrations and kinetics of inflammatory markers in dogs with GDV over a time frame of 48 h, and to compare to healthy dogs. Design and Setting: Prospective, observational cohort study in client-owned dogs with GDV. Materials and Methods: Fifteen dogs with GDV and 9 healthy control dogs were enrolled. Plasma concentrations of interleukin (IL)-6, IL-7, IL-8, IL-10, IL-15, IL-18, interferon gamma (IFN-γ), keratinocyte chemotactic-like, monocyte chemotactic protein (MCP)-1, Angiopoietin (Ang)-2, and C-reactive protein (CRP) were measured at admission (prior any therapeutic intervention, (T0), immediately after surgery (T1), 24 ± 4 h (T24), and 48 ± 4 h (T48) post-surgery. Cytokines were measured using multiplex magnetic bead assay. Plasma Ang-2 was measured with a commercial human ELISA test kit validated for dogs. Results: Dogs with GDV had significantly higher plasma concentrations of IFN-γ and IL-10 compared to healthy control dogs at all time points. Concentrations of IL-6 were significantly higher at T1 and T24, concentrations of MCP-1 at T24, and concentrations of CRP at T24 and T48. A significant increase between T0 and T1 was found for IL-6, IL-10, and CRP, between T1 and T24 for IL-8, IFN-γ, MCP-1, and CRP, and between T24 and T48 for IL-15, Ang-2, and CRP. A significant decrease between T0 and T1 was found for IL-7, IL-8, IL-15, IL-18, and Ang-2; between T1 and T24 for IL-6 and KC-like; and between T24 and T48 for IL-6. Conclusion: In GDV dogs, a mild pro-inflammatory reaction was present at admission, which peaked immediately after and up to 24 h post-surgery, mainly represented by IL-6, IFN-γ, MCP-1, and CRP, and which decreased at T48. In addition, the anti-inflammatory IL-10 was increased in GDV dogs at all time points

    Cervical Intervertebral Disk to Vertebral Body Ratios of Different Dog Breeds Based on Sagittal Magnetic Resonance Imaging

    Get PDF
    Objective: To establish sagittal area and length reference values and ratios between apparently normal canine cervical vertebrae and intervertebral disks using magnetic resonance imaging.Sample: Retrospective evaluation of cervical vertebral column magnetic resonance imaging studies of 44 dogs representing 5 different breeds (Labrador Retriever, n = 10; French Bulldog, n = 10; Great Dane, n = 9; Chihuahua, n = 10; Dachshund, n = 5).Procedures: Mid-sagittal measurements of vertebral body and disk areas were obtained from C3 through C7 vertebrae and C2/C3 through C6/C7 intervertebral disks. Disk to vertebra area ratios were calculated and compared among dog breeds. Additionally, sagittal vertebral body and disk length measurements were obtained and disk to vertebra length ratios calculated. Inter and intra observer variability was assessed.Results: There were significant differences for disk to vertebral body area and length ratios between evaluated dog breeds and cervical vertebral locations (p &lt; 0.001). Mean area ratio of Chihuahuas was significantly larger than all other breeds, while results from Dachshunds were only significantly different than Chihuahuas and Labrador Retrievers. Mean area ratios were statistically different between the cranial and caudal cervical vertebral locations. Regarding length ratios, results from Chihuahuas were significantly different than all breeds except Dachshunds. Mean length ratios were statistically different between all cervical locations, except C2/C3 compared to C3/C4. Intra- and interobserver variability was very good to excellent.Conclusion and Clinical Relevance: There are significant differences in area and length ratios between dog breeds. Differences also exist in area and length ratios between the cranial and caudal cervical vertebral column. These differences may play a role in the development of vertebral column diseases including intervertebral disk disease

    Feasibility of Na18F PET/CT and MRI for Noninvasive In Vivo Quantification of Knee Pathophysiological Bone Metabolism in a Canine Model of Post-traumatic Osteoarthritis.

    Get PDF
    PURPOSE To assess and quantify by molecular imaging knee osseous metabolic changes serially in an in vivo canine model of posttraumatic osteoarthritis (PTOA) of the knee utilizing sodium fluoride (Na18F) positron emission tomography (PET)/computed tomography (CT) coregistered with magnetic resonance imaging (MRI). MATERIALS AND METHODS Sodium fluoride PET imaging of 5 canines was performed prior to anterior cruciate ligament transection (ACLT) and 2 times post-ACLT (3 and 12 weeks). The PET/CT was coregistered with MRI, enabling serial anatomically guided visual and quantitative three-dimensional (3D) region of interest (ROI) assessment by maximum standardized uptake value. RESULTS Prior to ACLT, every 3D ROI assessed in both knees showed no Na18F uptake above background. The uptake of Na18F in the bone of the ACLT knees increased exponentially, presenting significantly higher uptake at 12 weeks in every region compared to the ACLT knees at baseline. Furthermore, the uninjured contralateral limb and the ipsilateral distal bones and joints presented Na18F uptake at 3 and 12 weeks post-ACLT. CONCLUSION This study demonstrated that Na18F PET/CT coregistered with MRI is a feasible molecular imaging biomarker to assess knee osseous metabolic changes serially in an in vivo canine model of knee PTOA. Moreover, it brings a novel musculoskeletal preclinical imaging methodology that can provide unique insights into PTOA pathophysiology

    Cervical intervertebral disk to vertebral body ratios of different dog breeds based on sagittal magnetic resonance imaging

    Get PDF
    OBJECTIVE : To establish sagittal area and length reference values and ratios between apparently normal canine cervical vertebrae and intervertebral disks using magnetic resonance imaging. SAMPLE : Retrospective evaluation of cervical vertebral column magnetic resonance imaging studies of 44 dogs representing 5 different breeds (Labrador Retriever, n = 10; French Bulldog, n = 10; Great Dane, n = 9; Chihuahua, n = 10; Dachshund, n = 5). PROCEDURES : Mid-sagittalmeasurements of vertebral body and disk areaswere obtained from C3 through C7 vertebrae and C2/C3 through C6/C7 intervertebral disks. Disk to vertebra area ratios were calculated and compared among dog breeds. Additionally, sagittal vertebral body and disk length measurements were obtained and disk to vertebra length ratios calculated. Inter and intra observer variability was assessed. RESULTS : There were significant differences for disk to vertebral body area and length ratios between evaluated dog breeds and cervical vertebral locations (p < 0.001). Mean area ratio of Chihuahuas was significantly larger than all other breeds, while results from Dachshunds were only significantly different than Chihuahuas and Labrador Retrievers. Mean area ratios were statistically different between the cranial and caudal cervical vertebral locations. Regarding length ratios, results from Chihuahuas were significantly different than all breeds except Dachshunds. Mean length ratios were statistically different between all cervical locations, except C2/C3 compared to C3/C4. Intra- and interobserver variability was very good to excellent. CONCLUSION AND CLINICAL RELEVANCE : There are significant differences in area and length ratios between dog breeds. Differences also exist in area and length ratios between the cranial and caudal cervical vertebral column. These differences may play a role in the development of vertebral column diseases including intervertebral disk disease.https://www.frontiersin.org/journals/veterinary-science#am2018Production Animal Studie

    Cervical Intervertebral Disk to Vertebral Body Ratios of Different Dog Breeds Based on Sagittal Magnetic Resonance Imaging.

    Get PDF
    To establish sagittal area and length reference values and ratios between apparently normal canine cervical vertebrae and intervertebral disks using magnetic resonance imaging. Retrospective evaluation of cervical vertebral column magnetic resonance imaging studies of 44 dogs representing 5 different breeds (Labrador Retriever, = 10; French Bulldog, = 10; Great Dane, = 9; Chihuahua, = 10; Dachshund, = 5). Mid-sagittal measurements of vertebral body and disk areas were obtained from C3 through C7 vertebrae and C2/C3 through C6/C7 intervertebral disks. Disk to vertebra area ratios were calculated and compared among dog breeds. Additionally, sagittal vertebral body and disk length measurements were obtained and disk to vertebra length ratios calculated. Inter and intra observer variability was assessed. There were significant differences for disk to vertebral body area and length ratios between evaluated dog breeds and cervical vertebral locations ( < 0.001). Mean area ratio of Chihuahuas was significantly larger than all other breeds, while results from Dachshunds were only significantly different than Chihuahuas and Labrador Retrievers. Mean area ratios were statistically different between the cranial and caudal cervical vertebral locations. Regarding length ratios, results from Chihuahuas were significantly different than all breeds except Dachshunds. Mean length ratios were statistically different between all cervical locations, except C2/C3 compared to C3/C4. Intra- and interobserver variability was very good to excellent. There are significant differences in area and length ratios between dog breeds. Differences also exist in area and length ratios between the cranial and caudal cervical vertebral column. These differences may play a role in the development of vertebral column diseases including intervertebral disk disease

    Plasma procalcitonin kinetics in healthy dogs and dogs undergoing tibial plateau leveling osteotomy.

    Get PDF
    BACKGROUND Procalcitonin (PCT) is a well-established biomarker for bacterial infection in human patients. OBJECTIVES We aimed to analyze the kinetics of plasma PCT (pPCT) in healthy dogs and dogs with canine cranial cruciate ligament (CCL) rupture undergoing tibial plateau leveling osteotomy (TPLO). METHODS This prospective, longitudinal study included 15 healthy dogs and 25 dogs undergoing TPLO. Hematology, pPCT, and C-reactive protein (CRP) were assessed on 3 consecutive days in healthy dogs and 1 day preoperatively and days 1, 2, 10, and 56 postoperatively. Inter- and intraindividual variability of pPCT were assessed in healthy dogs. Median pPCT concentrations of dogs with CCL rupture preoperatively were compared with healthy controls, and median pPCT concentrations, as well as percentage change post anesthesia, arthroscopy, and TPLO, were compared with baseline. For the correlation analysis, the Spearman rank correlation test was used. RESULTS Inter- and intraindividual variabilities of pPCT in healthy dogs were 36% and 15%, respectively. Median baseline pPCT concentrations were not significantly different between healthy dogs (118.9 pg/mL; IQR: 75.3-157.3 pg/mL) and dogs undergoing TPLO (95.9 pg/mL; IQR: 63.8-117.0 pg/mL). Plasma PCT concentrations were significantly lower immediately post- than preoperatively (P < 0.001). CRP, WBC, and neutrophil concentrations increased significantly on post-OP day 2 and had normalized by day 10. CONCLUSIONS These results indicate that CCL rupture, as well as anesthesia, arthroscopy, and TPLO combined, are not associated with increased pPCT concentrations in dogs with uncomplicated recovery. Considering the high intraindividual variability, individual serial measurements rather than a population-based reference interval should be considered

    Minimally Invasive Spine Surgery in Small Animals.

    No full text
    Minimally invasive spine surgery (MISS) seems to have many benefits for human patients and is currently used for various minor and major spine procedures. For MISS, a change in access strategy to the target location is necessary and it requires intraoperative imaging, special instrumentation, and magnification. Few veterinary studies have evaluated MISS for canine patients for spinal decompression procedures. This article discusses the general requirements for MISS and how these can be applied to veterinary spinal surgery. The current veterinary MISS literature is reviewed and suggestions are made on how to apply MISS to different spinal locations

    Zervikaler Bandscheibenvorfall beim Hund

    No full text
    Auch wenn der Großteil intervertebraler degenerativer Diskopathien weiterhin der thorakolumbalen Wirbelsäule vorbehalten bleibt, sind 14–16 % der Fälle akute zervikale Bandscheibenextrusionen. Es gibt viele Ähnlichkeiten in der Pathogenese der Diskopathie beider Lokalisationen, allerdings muss man sich über einige sehr wichtige Unterschiede in der neurologischen Präsentation und Prognose im Klaren sein. Diese beeinflussen die Entscheidungsfindung zur Behandlung von zervikalen Diskopathien erheblich
    • …
    corecore