1,318 research outputs found
Three-Body approach to the K^- d Scattering Length in Particle Basis
We report on the first calculation of the scattering length A_{K^-d} based on
a relativistic three-body approach where the two-body input amplitudes coupled
to the Kbar N channels have been obtained with the chiral SU(3) constraint, but
with isospin symmetry breaking effects taken into account. Results are compared
with a recent calculation applying a similar set of two-body amplitudes,based
on the fixed center approximation, considered as a good approximation for a
loosely bound target, and for which we find significant deviations from the
exact three-body results. Effects of the hyperon-nucleon interaction, and
deuteron -wave component are also evaluated.Comment: 5 pages, Submitted to Phys. Rev.
Semiclassical description of spin ladders
The Heisenberg spin ladder is studied in the semiclassical limit, via a
mapping to the nonlinear model. Different treatments are needed if the
inter-chain coupling is small, intermediate or large. For intermediate
coupling a single nonlinear model is used for the ladder. Its predicts
a spin gap for all nonzero values of if the sum of the spins
of the two chains is an integer, and no gap otherwise. For small , a better
treatment proceeds by coupling two nonlinear sigma models, one for each chain.
For integer , the saddle-point approximation predicts a sharp drop
in the gap as increases from zero. A Monte-Carlo simulation of a spin 1
ladder is presented which supports the analytical results.Comment: 8 pages, RevTeX 3.0, 4 PostScript figure
Do divorcing couples become happier by breaking up?
Divorce is a leap in the dark. The paper investigates whether people who split up actually become happier. Using the British Household Panel Survey, we can observe an individual's level of psychological well-being in the years before and after divorce. Our results show that divorcing couples reap psychological gains from the dissolution of their marriages. Men and women benefit equally. The paper also studies the effects of bereavement, of having dependant children and of remarriage. We measure well-being by using general health questionnaire and life satisfaction scores
Foucault, the museum and the diagram
Foucault’s work on the museum is partial and fragmentary but provides an interesting opportunity through which to explore issues of power, subjectivity and imagination. Following a discussion of Deleuze’s reading of Foucault and his introduction of the issue of diagram as a way of understanding the discursive and visual operation of power, the paper explores some of Foucault’s work from the period around 1967-9 on the non-relation to explore how he engaged with the question of seeing/saying that Deleuze identifies as a key problematic in his work. Through analysis of Foucault’s discussions of the themes of the outside, heterotopia and the work of the painter Manet, in the context of the museum, the paper explores how power operating through the diagram of the museum allows us to understand the space of imagination as one in which subjectivity is constituted
Adaptive Optimization of Wave Functions for Fermion Lattice Models
We present a simulation algorithm for Hamiltonian fermion lattice models. A
guiding trial wave function is adaptively optimized during Monte Carlo
evolution. We apply the method to the two dimensional Gross-Neveu model and
analyze systematc errors in the study of ground state properties. We show that
accurate measurements can be achieved by a proper extrapolation in the
algorithm free parameters.Comment: 4 pages, 6 figures (Encapsulated PostScript
Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease
A recent technique, proposed to alleviate the ``sign problem disease'', is
discussed in details. As well known the ground state of a given Hamiltonian
can be obtained by applying the imaginary time propagator to a
given trial state for large imaginary time and sampling
statistically the propagated state . However
the so called ``sign problem'' may appear in the simulation and such
statistical propagation would be practically impossible without employing some
approximation such as the well known ``fixed node'' approximation (FN). This
method allows to improve the FN dynamic with a systematic correction scheme.
This is possible by the simple requirement that, after a short imaginary time
propagation via the FN dynamic, a number of correlation functions can be
further constrained to be {\em exact} by small perturbation of the FN
propagated state, which is free of the sign problem. By iterating this scheme
the Monte Carlo average sign, which is almost zero when there is sign problem,
remains stable and finite even for large . The proposed algorithm is
tested against the exact diagonalization results available on finite lattice.
It is also shown in few test cases that the dependence of the results upon the
few parameters entering the stochastic technique can be very easily controlled,
unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure
Report on the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3)
This report records and discusses the Third Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE3). The report includes a
description of the keynote presentation of the workshop, which served as an
overview of sustainable scientific software. It also summarizes a set of
lightning talks in which speakers highlighted to-the-point lessons and
challenges pertaining to sustaining scientific software. The final and main
contribution of the report is a summary of the discussions, future steps, and
future organization for a set of self-organized working groups on topics
including developing pathways to funding scientific software; constructing
useful common metrics for crediting software stakeholders; identifying
principles for sustainable software engineering design; reaching out to
research software organizations around the world; and building communities for
software sustainability. For each group, we include a point of contact and a
landing page that can be used by those who want to join that group's future
activities. The main challenge left by the workshop is to see if the groups
will execute these activities that they have scheduled, and how the WSSSPE
community can encourage this to happen
Structural relaxation of E' gamma centers in amorphous silica
We report experimental evidence of the existence of two variants of the E'
gamma centers induced in silica by gamma rays at room temperature. The two
variants are distinguishable by the fine features of their line shapes in
paramagnetic resonance spectra. These features suggest that the two E' gamma
differ for their topology. We find a thermally induced interconversion between
the centers with an activation energy of about 34 meV. Hints are also found for
the existence of a structural configuration of minimum energy and of a
metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing
This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
A Natural Framework for Solar and 17 keV Neutrinos
Motivated by recent experimental claims for the existence of a 17 keV
neutrino and by the solar neutrino problem, we construct a class of models
which contain in their low-energy spectrum a single light sterile neutrino and
one or more Nambu-Goldstone bosons. In these models the required pattern of
breaking of lepton-number symmetry takes place near the electroweak scale and
all mass heirarchies are technically natural. The models are compatible with
all cosmological and astrophysical constraints, and can solve the solar
neutrino problem via either the MSW effect or vacuum oscillations. The deficit
in atmospheric muon neutrinos seen in the Kamiokande and IMB detectors can also
be explained in these models.Comment: 23 page
- …