17 research outputs found
Recommended from our members
Sortase-Mediated Labeling of M13 Bacteriophage and the Formation of Multi-Phage Structures
M13 filamentous bacteriophage has been used as a biotemplate for the nucle- ation of materials. Phage is an ideal and diverse scaffold with its large aspect ratio and ability to display biomolecules to bind a range of targets. To form more complex patterned materials, interactions between the phage must be specific and reliable. We develop a phage labeling method using sortase enzymes to create multi-phage nanostructures. We exploit two sortases and functionalize the N-termini of the pIII, pIX, and pVIII proteins with small and large moieties. For the pVIII, we show a 100 fold improvement in display of GFP molecules on the phage surface. Taking advantage of orthogonal sortases, we simultaneously label two capsid proteins on a single phage particle. Using these N-terminal labeling techniques, we demonstrate fluorescent staining of cells and construct a lampbrush phage structure linking the pIII of one phage to the pVIII of another using a biotin-streptavidin linkage. To further expand our labeling repertoire, C-terminal sortase labeling of phage was pursued. To achieve this goal, we transfer a loop structure from cholera toxin to pIII and label it with a fluorophore and a multi-domain protein. With this archi- tecture, we form end-to-end dimers using sortase to conjugate the loop structure to phage containing the nucleophile motif. Lastly, we investigate DNA hybridization as a method for crosslinking phage. Using sortase, we label the pVIII on two sets of phage: one with ssDNA and the other with a complementary DNA oligonucleotide. We anneal these phages together and observe phage networks that are dispersed by heat and reform upon cooling
A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies.
Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening
Roadmap for the use of base editors to decipher drug mechanism of action
CRISPR base editors are powerful tools for large-scale mutagenesis studies. This kind of approach can elucidate the mechanism of action of compounds, a key process in drug discovery. Here, we explore the utility of base editors in an early drug discovery context focusing on G-protein coupled receptors. A pooled mutagenesis screening framework was set up based on a modified version of the CRISPR-X base editor system. We determine optimized experimental conditions for mutagenesis where sgRNAs are delivered by cell transfection or viral infection over extended time periods (>14 days), resulting in high mutagenesis produced in a short region located at -4/+8 nucleotides with respect to the sgRNA match. The β2 Adrenergic Receptor (B2AR) was targeted in this way employing a 6xCRE-mCherry reporter system to monitor its response to isoproterenol. The results of our screening indicate that residue 184 of B2AR is crucial for its activation. Based on our experience, we outline the crucial points to consider when designing and performing CRISPR-based pooled mutagenesis screening, including the typical technical hurdles encountered when studying compound pharmacolog
Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development
The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated comprehensive in situ Hi-C maps of DNA loops during human monocyte-to-macrophage differentiation. We demonstrate that dynamic looping events are regulatory rather than structural in nature and uncover widespread coordination of dynamic enhancer activity at preformed and acquired DNA loops. Enhancer-bound loop formation and enhancer-activation of preformed loops represent two distinct modes of regulation that together form multi-loop activation hubs at key macrophage genes. Activation hubs connect 3.4 enhancers per promoter and exhibit a strong enrichment for Activator Protein 1 (AP-1) binding events, suggesting multi-loop activation hubs driven by cell-type specific transcription factors may represent an important class of regulatory chromatin structures for the spatiotemporal control of transcription
Recommended from our members
Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements
Recommended from our members
Transcriptomic signatures across human tissues identify functional rare genetic variation
© 2020 American Association for the Advancement of Science. All rights reserved. INTRODUCTION: The human genome contains tens of thousands of rare (minor allele frequency 800 genomes matched with transcriptomes across 49 tissues, we were able to study RVs that underlie extreme changes in the transcriptome. To capture the diversity of these extreme changes, we developed and integrated approaches to identify expression, allele-specific expression, and alternative splicing outliers, and characterized the RV landscape underlying each outlier signal. We demonstrate that personal genome interpretation and RV discovery is enhanced by using these signals. This approach provides a new means to integrate a richer set of functional RVs into models of genetic burden, improve disease gene identification, and enable the delivery of precision genomics
Population- and individual-specific regulatory variation in Sardinia
Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.M.P. is supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 633964 (ImmunoAgeing). Z.Z. is supported by the National Science Foundation (NSF) GRFP (DGE- 114747) and by the Stanford Center for Computational, Evolutionary, and Human Genomics (CEHG). Z.Z., J.R.D., and G.T.H. also acknowledge support from the Stanford Genome Training Program (SGTP; NIH/NHGRI T32HG000044). J.R.D. is supported by the Stanford Graduate Fellowship. K.R.K. is supported by Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEQ) Fellowship 32 CFR 168a. S.J.S. is supported by the NIHR Cambridge Biomedical Research Centre. The SardiNIA project is supported in part by the intramural program of the National Institute on Aging through contract HHSN271201100005C to the Consiglio Nazionale delle Ricerche of Italy. The RNA sequencing was supported by the PB05 InterOmics MIUR Flagship grant; by the FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità” grant; and by Sardinian Autonomous Region (L.R. no. 7/2009) grant cRP3-154 to F. Cucca, who is also supported by the Italian Foundation for Multiple Sclerosis (FISM 2015/R/09) and by the Fondazione di Sardegna (ex Fondazione Banco di Sardegna, Prot. U1301.2015/AI.1157.BE Prat. 2015-1651). S.B.M. is supported by the US National Institutes of Health through R01HG008150, R01MH101814, U01HG007436, and U01HG009080. All of the authors would like to thank the CRS4 and the SCGPM for the computational infrastructure supporting this project
Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures
M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multiphage devices requires precise control of interactions between the M13 capsid proteins. Toward this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multiphage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi-material devices.United States. Army Research Office (Institute for Collaborative Biotechnologies, grant W911NF-09-0001
Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures
M13 bacteriophage has been used as
a scaffold to organize materials
for various applications. Building more complex multiphage devices
requires precise control of interactions between the M13 capsid proteins.
Toward this end, we engineered a loop structure onto the pIII capsid
protein of M13 bacteriophage to enable sortase-mediated labeling reactions
for C-terminal display. Combining this with N-terminal sortase-mediated
labeling, we thus created a phage scaffold that can be labeled orthogonally
on three capsid proteins: the body and both ends. We show that covalent
attachment of different DNA oligonucleotides at the ends of the new
phage structure enables formation of multiphage particles oriented
in a specific order. These have potential as nanoscale scaffolds for
multi-material devices
Recommended from our members
A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies.
Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening