17,993 research outputs found
Magnon Heat Conductivity and Mean Free Paths in Two-Leg Spin Ladders: A Model-Independent Determination
The magnon thermal conductivity of the spin ladders
in has been investigated at low doping levels
, 0.125, 0.25, 0.5 and 0.75. The Zn-impurities generate nonmagnetic
defects which define an upper limit for and therefore allow
a clear-cut relation between and to
be established independently of any model. Over a large temperature range we
observe a progressive suppression of with increasing
Zn-content and find in particular that with respect to pure is strongly suppressed even in
the case of tiny impurity densities where ~{\AA}.
This shows unambiguously that large ~{\AA} which
have been reported for and on basis of a kinetic model are in the correct order
of magnitude
Income and distance elasticities of values of travel time savings: New Swiss results
This paper presents the findings of a study looking into the valuation of travel time savings (VTTS) in Switzerland, across modes as well as across purpose groups. The study makes several departures from the usual practice in VTTS studies, with the main one being a direct representation of the income and distance elasticity of the VTTS measures. Here, important gains in model performance and significantly different results are obtained through this approach. Additionally, the analysis shows that the estimation of robust coefficients for congested car travel time is hampered by the low share of congested time in the overall travel time, and the use of an additional rate-of-congestion coefficient, in addition to a generic car travel time coefficient, is preferable. Finally, the analysis demonstrates that the population
mean of the indicators calculated is quite different from the sample means and presents methods to calculate those, along with the associated variances. These variances are of great interest as they allow the generation of confidence intervals, which can be extremely useful in cost-benefit analyses
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
Fundamental conservation laws predict ballistic, i.e., dissipationless
transport behaviour in one-dimensional quantum magnets. Experimental evidence,
however, for such anomalous transport has been lacking ever since. Here we
provide experimental evidence for ballistic heat transport in a S=1/2
Heisenberg chain. In particular, we investigate high purity samples of the
chain cuprate SrCuO2 and observe a huge magnetic heat conductivity
. An extremely large spinon mean free path of more than a
micrometer demonstrates that is only limited by extrinsic
scattering processes which is a clear signature of ballistic transport in the
underlying spin model
Transition from van-der-Waals to H Bonds dominated Interaction in n-Propanol physisorbed on Graphite
Multilayer sorption isotherms of 1-propanol on graphite have been measured by
means of high-resolution ellipsometry within the liquid regime of the adsorbed
film for temperatures ranging from 180 to 260 K. In the first three monolayers
the molecules are oriented parallel to the substrate and the growth is roughly
consistent with the Frenkel-Halsey-Hill-model (FHH) that is obeyed in
van-der-Waals systems on strong substrates. The condensation of the fourth and
higher layers is delayed with respect to the FHH-model. The fourth layer is
actually a bilayer. Furthermore there is indication of a wetting transition.
The results are interpreted in terms of hydrogen-bridge bonding within and
between the layers.Comment: 4 pages, 3 figure
Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp
A recent Letter by Hess and Philipp claims that Bell's theorem neglects the
possibility of time-like dependence in local hidden variables, hence is not
conclusive. Moreover the authors claim that they have constructed, in an
earlier paper, a local realistic model of the EPR correlations. However, they
themselves have neglected the experimenter's freedom to choose settings, while
on the other hand, Bell's theorem can be formulated to cope with time-like
dependence. This in itself proves that their toy model cannot satisfy local
realism, but we also indicate where their proof of its local realistic nature
fails.Comment: Latex needs epl.cl
Ray-tracing in pseudo-complex General Relativity
Motivated by possible observations of the black hole candidate in the center
of our galaxy and the galaxy M87, ray-tracing methods are applied to both
standard General Relativity (GR) and a recently proposed extension, the
pseudo-complex General Relativity (pc-GR). The correction terms due to the
investigated pc-GR model lead to slower orbital motions close to massive
objects. Also the concept of an innermost stable circular orbit (ISCO) is
modified for the pc-GR model, allowing particles to get closer to the central
object for most values of the spin parameter than in GR. Thus, the
accretion disk, surrounding a massive object, is brighter in pc-GR than in GR.
Iron K emission line profiles are also calculated as those are good
observables for regions of strong gravity. Differences between the two theories
are pointed out.Comment: revised versio
Realistic interpretation of a superposition state does not imply a mixture
Contrary to previous claims, it is shown that, for an ensemble of either
single-particle systems or multi-particle systems, the realistic interpretation
of a superposition state that mathematically describes the ensemble does not
imply that the ensemble is a mixture. Therefore it cannot be argued that the
realistic interpretation is wrong on the basis that some predictions derived
from the mixture are different from the corresponding predictions derived from
the superposition state
- …