366 research outputs found

    The western blue groper (Achoerodus gouldii), a protogynous hermaphroditic labrid with exceptional longevity, late maturity, slow growth, and both late maturation and sex change

    Get PDF
    The western blue groper (Achoerodus gouldii) is shown to be a temperate protogynous hermaphrodite, which spawns between early winter and mid-spring. Because A. gouldii changes body color at about the time of sex change, its color can be used as a proxy for sex for estimating the size and age at sex change and for estimating growth when it is not possible to use gonads for determining the sex of this fish. The following characteristics make A. gouldii highly susceptible to overfishing: 1) exceptional longevity, with a maximum age (70 years) that is by far the greatest yet estimated for a labrid; 2) slow growth for the first 15 years and little subsequent growth by females; and 3) late maturation at a large total length (TL50 = 653 mm) and old age (~17 years) and 4) late sex change at an even greater total length (TL50 = 821 mm) and age (~35 years). The TL50 at maturity and particularly at sex change exceeded the minimum legal total length (500 mm) of A. gouldii and the lengths of many recreationally and commercially caught fish. Many of these characteristics are found in certain deep-water fishes that are likewise considered susceptible to overfishing. Indeed, although fishing effort for A. gouldii in Western Australia is not particularly high, per-recruit analyses indicate that this species is already close to or fully exploited

    Evolutionary computation for bottom-up hypothesis generation on emotion and communication

    Get PDF
    Through evolutionary computation, affective models may emerge autonomously in unanticipated ways. We explored whether core affect would be leveraged through communication with conspecifics (e.g. signalling danger or foraging opportunities). Genetic algorithms served to evolve recurrent neural networks controlling virtual agents in an environment with fitness-increasing food and fitness-reducing predators. Previously, neural oscillations emerged serendipitously, with higher frequencies for positive than negative stimuli, which we replicated here in the fittest agent. The setup was extended so that oscillations could be exapted for the communication between two agents. An adaptive communicative function evolved, as shown by fitness benefits relative to (1) a non-communicative reference simulation and (2) lesioning of the connections used for communication. An exaptation of neural oscillations for communication was not observed but a simpler type of communication developed than was initially expected. The agents approached each other in a periodic fashion and slightly modified these movements to approach food or avoid predators. The coupled agents, though controlled by separate networks, appeared to self-assemble into a single vibrating organism. The simulations (a) strengthen an account of core affect as an oscillatory modulation of neural-network competition, and (b) encourage further work on the exaptation of core affect for communicative purposes

    A Phase Lag between Disk and Corona in GRMHD Simulations of Precessing Tilted Accretion Disks

    Full text link
    In the course of its evolution, a black hole (BH) accretes gas from a wide range of directions. Given a random accretion event, the typical angular momentum of an accretion disc would be tilted by ∼\sim60∘^\circ relative to the BH spin. Misalignment causes the disc to precess at a rate that increases with BH spin and tilt angle. We present the first general-relativistic magnetohydrodynamic (GRMHD) simulations spanning a full precession period of highly tilted (60∘^\circ), moderately thin (h/r=0.1h/r=0.1) accretion discs around a rapidly spinning (a≃0.9a\simeq0.9) BH. While the disc and jets precess in phase, we find that the corona, sandwiched between the two, lags behind by ≳10∘\gtrsim 10^{\circ}. For spectral models of BH accretion, the implication is that hard non-thermal (corona) emission lags behind the softer (disc) emission, thus potentially explaining some properties of the hard energy lags seen in Type-C low frequency quasi-periodic oscillations in X-Ray binaries. While strong jets are unaffected by this disc-corona lag, weak jets stall when encountering the lagging corona at distances r∼100r \sim 100 black hole radii. This interaction may quench large-scale jet formation.Comment: 5 pages, 4 figures, submitted to MNRAS, see YouTube playlist for 3D renderings: https://www.youtube.com/playlist?list=PLDO1oeU33GwmwOV_Hp9s7572JdU8JPSS

    Biological characteristics and mortality of western butterfish (Pentapodus vitta), an abundant bycatch species of prawn trawling and recreational fishing in a large subtropical embayment

    Get PDF
    The western butterfish (Pentapodus vitta) is numerous in the bycatch of prawn trawling and recreational fishing in Shark Bay, Western Australia. We have thus determined crucial aspects of its biological characteristics and the potential impact of fishing on its abundance within this large subtropical marine embayment. Although both sexes attained a maximum age of 8 years, males grow more rapidly and to a larger size. Maturity is attained at the end of the first year of life and spawning occurs between October and January. The use of a Bayesian approach to combine independent estimates for total mortality, Z, and natural mortality, M, yielded slightly higher point estimates for Z than M. This result indicates that P. vitta is lightly impacted by fishing. It is relevant that, potentially, the individuals can spawn twice before recruitment into the fishery and that 73% of recreationally caught individuals are returned live to the water
    • …
    corecore