131 research outputs found
Giant Josephson current through a single bound state in a superconducting tunnel junction
We study the microscopic structure of the Josephson current in a single-mode
tunnel junction with a wide quasiclassical tunnel barrier. In such a junction
each Andreev bound state carries a current of magnitude proportional to the
{\em amplitude} of the normal electron transmission through the junction.
Tremendous enhancement of the bound state current is caused by the resonance
coupling of superconducting bound states at both superconductor-insulator
interfaces of the junction. The possibility of experimental observation of the
single bound state current is discussed.Comment: 11 pages, [aps,preprint]{revtex
Spin-Imbalance and Magnetoresistance in Ferromagnet/Superconductor/Ferromagnet Double Tunnel Junctions
We theoretically study the spin-dependent transport in a ferromagnet/super-
conductor/ferromagnet double tunnel junction. The tunneling current in the
antiferromagnetic alignment of the magnetizations gives rise to a spin
imbalance in the superconductor. The resulting nonequilibrium spin density
strongly suppresses the superconductivity with increase of bias voltage and
destroys it at a critical voltage Vc. The results provide a new method not only
for measuring the spin polarization of ferromagnets but also for controlling
superconductivity and tunnel magnetoresistance (TMR) by applying the bias
voltage.Comment: 4pages, to be published in Phys. Rev. Let
Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems
We calculate the current and the spin-torque in small symmetric double tunnel
barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems.
Spin-accumulation on the superconductor governs the transport properties when
the spin-flip relaxation time is longer than the transport dwell time. In the
elastic transport regime, it is demonstrated that the relative change in the
current (spin-torque) for F-S-F systems equals the relative change in the
current (spin-torque) for F-N-F systems upon changing the relative
magnetization direction of the two ferromagnets. This differs from the results
in the inelastic transport regime where spin-accumulation suppresses the
superconducting gap and dramatically changes the magnetoresistance [S.
Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The
experimental relevance of the elastic and inelastic transport regimes,
respectively, as well as the reasons for the change in the transport properties
are discussed.Comment: 7 page
Inherent thermometry in a hybrid superconducting tunnel junction
We discuss inherent thermometry in a Superconductor - Normal metal -
Superconductor tunnel junction. In this configuration, the energy selectivity
of single-particle tunneling can provide a significant electron cooling,
depending on the bias voltage. The usual approach for measuring the electron
temperature consists in using an additional pair of superconducting tunnel
junctions as probes. In this paper, we discuss our experiment performed on a
different design with no such thermometer. The quasi-equilibrium in the central
metallic island is discussed in terms of a kinetic equation including injection
and relaxation terms. We determine the electron temperature by comparing the
micro-cooler experimental current-voltage characteristic with isothermal
theoretical predictions. The limits of validity of this approach, due to the
junctions asymmetry, the Andreev reflection or the presence of sub-gap states
are discussed
- …