131 research outputs found

    Giant Josephson current through a single bound state in a superconducting tunnel junction

    Full text link
    We study the microscopic structure of the Josephson current in a single-mode tunnel junction with a wide quasiclassical tunnel barrier. In such a junction each Andreev bound state carries a current of magnitude proportional to the {\em amplitude} of the normal electron transmission through the junction. Tremendous enhancement of the bound state current is caused by the resonance coupling of superconducting bound states at both superconductor-insulator interfaces of the junction. The possibility of experimental observation of the single bound state current is discussed.Comment: 11 pages, [aps,preprint]{revtex

    Spin-Imbalance and Magnetoresistance in Ferromagnet/Superconductor/Ferromagnet Double Tunnel Junctions

    Full text link
    We theoretically study the spin-dependent transport in a ferromagnet/super- conductor/ferromagnet double tunnel junction. The tunneling current in the antiferromagnetic alignment of the magnetizations gives rise to a spin imbalance in the superconductor. The resulting nonequilibrium spin density strongly suppresses the superconductivity with increase of bias voltage and destroys it at a critical voltage Vc. The results provide a new method not only for measuring the spin polarization of ferromagnets but also for controlling superconductivity and tunnel magnetoresistance (TMR) by applying the bias voltage.Comment: 4pages, to be published in Phys. Rev. Let

    Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems

    Full text link
    We calculate the current and the spin-torque in small symmetric double tunnel barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems. Spin-accumulation on the superconductor governs the transport properties when the spin-flip relaxation time is longer than the transport dwell time. In the elastic transport regime, it is demonstrated that the relative change in the current (spin-torque) for F-S-F systems equals the relative change in the current (spin-torque) for F-N-F systems upon changing the relative magnetization direction of the two ferromagnets. This differs from the results in the inelastic transport regime where spin-accumulation suppresses the superconducting gap and dramatically changes the magnetoresistance [S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The experimental relevance of the elastic and inelastic transport regimes, respectively, as well as the reasons for the change in the transport properties are discussed.Comment: 7 page

    Inherent thermometry in a hybrid superconducting tunnel junction

    Full text link
    We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed
    • …
    corecore