5 research outputs found

    An ambipolar transistor based on a monolayer WS2 using lithium ions injection

    No full text
    Ambipolar field-effect transistor (FET) devices based on two-dimensional (2D) materials have been attracted much attention due to potential applications in integrated circuits, flexible electronics and optical sensors. However, it is difficult to tune Fermi level between conduction and valence bands using a traditional SiO _2 as dielectric layer. Here, we employed the lithium-ion conductive glass ceramic (LICGC) as the back-gate electrode in a monolayer WS _2 FET. The effective accumulation and dissipation of Li ^+ ions in the interface induce a wide tune of Fermi level in the conducting channel by electron and hole doping, which show an ambipolar transport characteristics with threshold voltages at 0.9 V and −1.3 V, respectively. Our results provide an opportunity for fabricating ultra-thin ambipolar FET based on 2D materials

    Optimization Model of Signal-to-Noise Ratio for a Typical Polarization Multispectral Imaging Remote Sensor

    No full text
    The signal-to-noise ratio (SNR) is an important performance evaluation index of polarization spectral imaging remote sensors. The SNR-estimation method based on the existing remote sensor is not perfect. To improve the SNR of this model, a partial detector check slant direction is presented in this study, and a polarization extinction ratio related to the internal SNR model of a typical multispectral imaging remote sensor is combined with the vector radiative transfer model to construct the atmosphere 6SV–SNR coupling model. The new result is that the central wavelength of the detection spectrum, the observation zenith angle, and the extinction ratio all affect the SNR of the remote sensor, and the SNR increases with the increase in the central wavelength of the detection spectrum. It is proved that the model can comprehensively estimate the SNR of a typical polarization multispectral imaging remote sensor under different detection conditions, and it provides an important basis for the application evaluation of such remote sensors
    corecore