31 research outputs found

    Photonic quantum memory in two-level ensembles based on modulating the refractive index in time: equivalence to gradient echo memory

    Full text link
    We present a quantum memory protocol that allows to store light in ensembles of two-level atoms, e.g. rare-earth ions doped into a crystal, by modulating the refractive index of the host medium of the atoms linearly in time. We show that under certain conditions the resulting dynamics is equivalent to that underlying the gradient echo memory protocol, which relies on a spatial gradient of the atomic resonance frequencies. We discuss the prospects for an experimental implementation.Comment: 5 pages, 2 figure

    Evading noise in multiparameter quantum metrology with indefinite causal order

    Full text link
    Quantum theory allows the traversing of multiple channels in a superposition of different orders. When the order in which the channels are traversed is controlled by an auxiliary quantum system, various unknown parameters of the channels can be estimated by measuring only the control system, even when the state of the probe alone would be insensitive. Moreover, increasing the dimension of the control system increases the number of simultaneously estimable parameters, which has important metrological ramifications. We demonstrate this capability for simultaneously estimating both unitary and noise parameters, including multiple parameters from the same unitary such as rotation angles and axes and from noise channels such as depolarization, dephasing, and amplitude damping in arbitrary dimensions. We identify regimes of unlimited advantages, taking the form of p2p^2 smaller variances in estimation when the noise probability is 1p1-p, for both single and multiparameter estimation when using our schemes relative to any comparable scheme whose causal order is definite.Comment: 18 pages, 7 figure

    Entanglement over global distances via quantum repeaters with satellite links

    Full text link
    We study entanglement creation over global distances based on a quantum repeater architecture that uses low-earth orbit satellites equipped with entangled photon sources, as well as ground stations equipped with quantum non-demolition detectors and quantum memories. We show that this approach allows entanglement creation at viable rates over distances that are inaccessible via direct transmission through optical fibers or even from very distant satellites.Comment: 5+3 pages, 3+2 figure

    Quantum Memory with a controlled homogeneous splitting

    Full text link
    We propose a quantum memory protocol where a input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal Electromagnetically-Induced-Transparency (EIT) is only formal because no ground state coherence based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time, the protocols are perfectly efficient and noise-free. We compare the technique to other quantum memories, and propose atomic systems where the experiment can be realized.Comment: submitted to New Journal of Physics, Focus on Quantum Memor

    Entanglement between more than two hundred macroscopic atomic ensembles in a solid

    Full text link
    We create a multi-partite entangled state by storing a single photon in a crystal that contains many large atomic ensembles with distinct resonance frequencies. The photon is re-emitted at a well-defined time due to an interference effect analogous to multi-slit diffraction. We derive a lower bound for the number of entangled ensembles based on the contrast of the interference and the single-photon character of the input, and we experimentally demonstrate entanglement between over two hundred ensembles, each containing a billion atoms. In addition, we illustrate the fact that each individual ensemble contains further entanglement. Our results are the first demonstration of entanglement between many macroscopic systems in a solid and open the door to creating even more complex entangled states.Comment: 10 pages, 8 figures; see also parallel submission by Frowis et a
    corecore