3 research outputs found

    Utilizing residual sensing slots to enhance energy efficiency of opportunistic cognitive radio networks

    No full text
    In Broadband Communications (BBC), terms like “Green Communication (GC)”, “Energy Efficiency (EE)”, and “Opportunistic Cognitive Radio (OCR)” are pursuing methods for saving energy consumption while accomplishing communications. Good implementations of these terms/concepts contribute in reducing pollution and preserve nature resources. Forthcoming mobile generations will face many tradeoffs between EE considerations versus system performance parameters especially throughput. In a multi-channel OCR system, the Secondary User (SU) senses some selected candidate primary channels based on a “belief” concept. This belief state represents the occupancy/vacancy state of the primary channel and is deduced via a Partial Observation Markov Decision Process (POMDP). Within the OCR transmission frame, a fixed time-period at the beginning of this frame is dedicated for sensing multi primary channels. The SU performs the sensing needed to explore the state of occupancy/vacancy/fading of primary channels -within the sensing period- by dedicating a sensing slot for sensing each primary channel, then, SU updates its channel state belief accordingly. SU may not find it necessary to continue sensing more channels -using more sensing slots- in case of “low belief”, “bad CSI”, “highly believed to be occupied”, or even “sleep” if no candidate channels exist. This will lead to residual (not used) sensing slots which will be a wasted time in the frame time interval. This paper proposes an enhanced algorithm (to a previous work Feng and Gan, 2015) where these unused sensing slots are utilized to enhance the system EE. This is done by manipulating extended variable time induced from using these residual slots to extend the available transmission time. This induced variable time will increase throughput while keeping sensing energy. The metric used in this work is the Normalized Energy Efficiency (NEE) which is in consistence with many research directions in this field. In Feng and Gan (2015), the obtained NEE results reached ∌93% after about 20 transmitted frames, as well as, when 20 primary channels exist in the system. This work proposed an enhanced optimum and approximate algorithms that obtain as high as ∌135% of NEE after about 20 transmitted frames, they also obtained ∌228% using the optimum algorithm, or, ∌138% using the approximate algorithm when 20 primary channels are available. Keywords: Green cellular, Energy efficiency, Cognitive radio, Partially observable Markov decision process, Heterogeneous wireless network

    Intratracheal Administration of Chloroquine-Loaded Niosomes Minimize Systemic Drug Exposure

    No full text
    Pulmonary administration provides a useful alternative to oral and invasive routes of administration while enhancing and prolonging the accumulation of drugs into the lungs and reducing systemic drug exposure. In this study, chloroquine, as a model drug, was loaded into niosomes for potential pulmonary administration either via dry powder inhalation or intratracheally. Chloroquine-loaded niosomes have been prepared and extensively characterized. Furthermore, drug-loaded niosomes were lyophilized and their flowing properties were evaluated by measuring the angle of repose, Carr’s index, and Hausner ratio. The developed niosomes demonstrated a nanosized (100–150 nm) spherical morphology and chloroquine entrapment efficiency of ca. 24.5%. The FT-IR results indicated the incorporation of chloroquine into the niosomes, whereas in vitro release studies demonstrated an extended-release profile of the drug-loaded niosomes compared to the free drug. Lyophilized niosomes exhibited poor flowability that was not sufficiently improved after the addition of lactose or when cryoprotectants were exploited throughout the lyophilization process. In vivo, intratracheal administration of chloroquine-loaded niosomes in rats resulted in a drug concentration in the blood that was 10-fold lower than the oral administration of the free drug. Biomarkers of kidney and liver functions (i.e., creatinine, urea, AST, and ALT) following pulmonary administration of the drug-loaded nanoparticles were of similar levels to those of the control untreated animals. Hence, the use of a dry powder inhaler for administration of lyophilized niosomes is not recommended, whereas intratracheal administration might provide a promising strategy for pulmonary administration of niosomal dispersions while minimizing systemic drug exposure and adverse reactions

    Delving into the properties of nanostructured Mg ferrite and PEG composites: A comparative study on structure, electrical conductivity, and dielectric relaxation

    No full text
    Magnesium ferrite (MgFe2O4) and polyethylene glycol (PEG) are materials known for their versatility in various applications. This study presents a comprehensive comparative analysis of the electrical conductivity and dielectric relaxation of nanostructured MgFe2O4 and its composites with PEG. Through experimentation, it was observed that incorporating PEG into MgFe2O4 did not lead to a high relative observed decrease or increase in electrical conductivity at room temperature. The study revealed that the composites maintained stable electrical behavior at room temperature, with a dielectric constant value of around 9 and a loss tangent value of around 0.1 at high frequency (around 7 MHz). The electron-hole hopping mechanism was identified as the underlying cause for the strong dielectric dispersion with frequency. The low dielectric loss and conductivity of the MgFe2O4 and PEG/ferrite composites make them promising candidates for high-frequency switching applications and microelectronic devices, particularly in scenarios where negligible eddy currents are essential. Additionally, complex impedance data analysis demonstrated that the capacitive and resistive properties of the composites are primarily attributed to grain boundary processes. This study provides a comprehensive analysis of the electrical and dielectric properties of MgFe2O4 and PEG composites and highlights their potential for many applications in materials science, particularly in electrical and electronic devices
    corecore