7,091 research outputs found

    Thermoplasmonics: Quantifying plasmonic heating in single nanowires

    Full text link
    Plasmonic absorption of light can lead to significant local heating in metallic nanostructures, an effect that defines the sub-field of thermoplasmonics and has been leveraged in diverse applications from biomedical technology to optoelectronics. Quantitatively characterizing the resulting local temperature increase can be very challenging in isolated nanostructures. By measuring the optically-induced change in resistance of metal nanowires with a transverse plasmon mode, we quantitatively determine the temperature increase in single nanostructures, with the dependence on incident polarization clearly revealing the plasmonic heating mechanism. Computational modeling explains the resonant and nonresonant contributions to the optical heating and the dominant pathways for thermal transport. These results, obtained by combining electronic and optical measurements, place a bound on the role of optical heating in prior experiments, and suggest design guidelines for engineered structures meant to leverage such effects.Comment: 17 pages, 4 figures + 3 pages supporting materia

    Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases

    Full text link
    We describe the production and characterization of microelectromagnets made for trapping and manipulating atomic ensembles. The devices consist of 7 fabricated parallel copper conductors 3 micrometer thick, 25mm long, with widths ranging from 3 to 30 micrometer, and are produced by electroplating a sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A / cm^2 are achieved in continuous mode operation. The device operates successfully at a base pressure of 10^-11 mbar. The microstructures permit the realization of a variety of magnetic field configurations, and hence provide enormous flexibility for controlling the motion and the shape of Bose-Einstein condensates.Comment: 4 pages, 3 figure

    New results on superconformal quivers

    Full text link
    All superconformal quivers are shown to satisfy the relation c = a and are thus good candidates for being the field theory living on D3 branes probing CY singularities. We systematically study 3 block and 4 block chiral quivers which admit a superconformal fixed point of the RG equation. Most of these theories are known to arise as living on D3 branes at a singular CY manifold, namely complex cones over del Pezzo surfaces. In the process we find a procedure of getting a new superconformal quiver from a known one. This procedure is termed "shrinking" and, in the 3 block case, leads to the discovery of two new models. Thus, the number of superconformal 3 block quivers is 16 rather than the previously known 14. We prove that this list exausts all the possibilities. We suggest that all rank 2 chiral quivers are either del Pezzo quivers or can be obtained by shrinking a del Pezzo quiver and verify this statement for all 4 block quivers, where a lot of "shrunk'' del Pezzo models exist.Comment: 51 pages, many figure

    Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    Get PDF
    As the number of spins in an ensemble is reduced, the statistical uctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer- scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble

    Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

    Full text link
    We report on recent progress on the splitting functions for the evolution of parton distributions and related quantities, the (lightlike) cusp anomalous dimensions, in perturbative QCD. New results are presented for the four-loop (next-to-next-to-next-to-leading order, N^3LO) contributions to the flavour-singlet splitting functions and the gluon cusp anomalous dimension. We present first results, the moments N=2 and N=3, for the five-loop (N^4LO) non-singlet splitting functions.Comment: 10 pages, LaTeX (PoS style), 3 eps-figures. Contribution to the proceedings of `Loops & Legs 2018', St. Goar (Germany), April/May 201

    Exceptional Collections and del Pezzo Gauge Theories

    Full text link
    Stacks of D3-branes placed at the tip of a cone over a del Pezzo surface provide a way of geometrically engineering a small but rich class of gauge/gravity dualities. We develop tools for understanding the resulting quiver gauge theories using exceptional collections. We prove two important results for a general quiver gauge theory: 1) we show the ordering of the nodes can be determined up to cyclic permutation and 2) we derive a simple formula for the ranks of the gauge groups (at the conformal point) in terms of the numbers of bifundamentals. We also provide a detailed analysis of four node quivers, examining when precisely mutations of the exceptional collection are related to Seiberg duality.Comment: 26 pages, 1 figure; v2 footnote 2 amended; v3 ref adde

    Brane Tilings and Exceptional Collections

    Full text link
    Both brane tilings and exceptional collections are useful tools for describing the low energy gauge theory on a stack of D3-branes probing a Calabi-Yau singularity. We provide a dictionary that translates between these two heretofore unconnected languages. Given a brane tiling, we compute an exceptional collection of line bundles associated to the base of the non-compact Calabi-Yau threefold. Given an exceptional collection, we derive the periodic quiver of the gauge theory which is the graph theoretic dual of the brane tiling. Our results give new insight to the construction of quiver theories and their relation to geometry.Comment: 46 pages, 37 figures, JHEP3; v2: reference added, figure 13 correcte

    Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    Get PDF
    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained
    • …
    corecore