5 research outputs found

    Using Scalarizations for the Approximation of Multiobjective Optimization Problems: Towards a General Theory

    Full text link
    We study the approximation of general multiobjective optimization problems with the help of scalarizations. Existing results state that multiobjective minimization problems can be approximated well by norm-based scalarizations. However, for multiobjective maximization problems, only impossibility results are known so far. Countering this, we show that all multiobjective optimization problems can, in principle, be approximated equally well by scalarizations. In this context, we introduce a transformation theory for scalarizations that establishes the following: Suppose there exists a scalarization that yields an approximation of a certain quality for arbitrary instances of multiobjective optimization problems with a given decomposition specifying which objective functions are to be minimized / maximized. Then, for each other decomposition, our transformation yields another scalarization that yields the same approximation quality for arbitrary instances of problems with this other decomposition. In this sense, the existing results about the approximation via scalarizations for minimization problems carry over to any other objective decomposition -- in particular, to maximization problems -- when suitably adapting the employed scalarization. We further provide necessary and sufficient conditions on a scalarization such that its optimal solutions achieve a constant approximation quality. We give an upper bound on the best achievable approximation quality that applies to general scalarizations and is tight for the majority of norm-based scalarizations applied in the context of multiobjective optimization. As a consequence, none of these norm-based scalarizations can induce approximation sets for optimization problems with maximization objectives, which unifies and generalizes the existing impossibility results concerning the approximation of maximization problems

    Approximating Multiobjective Optimization Problems: How exact can you be?

    Full text link
    It is well known that, under very weak assumptions, multiobjective optimization problems admit (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon)-approximation sets (also called ε\varepsilon-Pareto sets) of polynomial cardinality (in the size of the instance and in 1ε\frac{1}{\varepsilon}). While an approximation guarantee of 1+ε1+\varepsilon for any ε>0\varepsilon>0 is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon) can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 11, in some of the objectives while still obtaining a guarantee of 1+ε1+\varepsilon in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon)-approximation set

    One-Exact Approximate Pareto Sets

    Full text link
    Papadimitriou and Yannakakis show that the polynomial-time solvability of a certain singleobjective problem determines the class of multiobjective optimization problems that admit a polynomial-time computable (1+ε,…,1+ε)(1+\varepsilon, \dots , 1+\varepsilon)-approximate Pareto set (also called an ε\varepsilon-Pareto set). Similarly, in this article, we characterize the class of problems having a polynomial-time computable approximate ε\varepsilon-Pareto set that is exact in one objective by the efficient solvability of an appropriate singleobjective problem. This class includes important problems such as multiobjective shortest path and spanning tree, and the approximation guarantee we provide is, in general, best possible. Furthermore, for biobjective problems from this class, we provide an algorithm that computes a one-exact ε\varepsilon-Pareto set of cardinality at most twice the cardinality of a smallest such set and show that this factor of 2 is best possible. For three or more objective functions, however, we prove that no constant-factor approximation on the size of the set can be obtained efficiently

    An approximation algorithm for a general class of multi-parametric optimization problems

    No full text
    In a widely-studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. Then, the goal is to provide an optimal solution set, i.e., a set containing an optimal solution for each non-parametric problem obtained by fixing a parameter vector. For many multi-parametric optimization problems, however, an optimal solution set of minimum cardinality can contain super-polynomially many solutions. Consequently, no polynomial-time exact algorithms can exist for these problems even if P=NP. We propose an approximation method that is applicable to a general class of multi-parametric optimization problems and outputs a set of solutions with cardinality polynomial in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric version and provides an approximation guarantee that is arbitrarily close to the approximation guarantee of the approximation algorithm for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, our algorithm is an FPTAS. Further, we show that, for any given approximation guarantee, the minimum cardinality of an approximation set is, in general, not â„“-approximable for any natural number â„“ less or equal to the number of parameters, and we discuss applications of our results to classical multi-parametric combinatorial optimizations problems. In particular, we obtain an FPTAS for the multi-parametric minimum s-t-cut problem, an FPTAS for the multi-parametric knapsack problem, as well as an approximation algorithm for the multi-parametric maximization of independence systems problem

    An approximation algorithm for a general class of parametric optimization problems

    No full text
    In a (linear) parametric optimization problem, the objective value of each feasible solution is an affine function of a real-valued parameter and one is interested in computing a solution for each possible value of the parameter. For many important parametric optimization problems including the parametric versions of the shortest path problem, the assignment problem, and the minimum cost flow problem, however, the piecewise linear function mapping the parameter to the optimal objective value of the corresponding non-parametric instance (the optimal value function) can have super-polynomially many breakpoints (points of slope change). This implies that any optimal algorithm for such a problem must output a super-polynomial number of solutions. We provide a method for lifting approximation algorithms for non-parametric optimization problems to their parametric counterparts that is applicable to a general class of parametric optimization problems. The approximation guarantee achieved by this method for a parametric problem is arbitrarily close to the approximation guarantee of the algorithm for the corresponding non-parametric problem. It outputs polynomially many solutions and has polynomial running time if the non-parametric algorithm has polynomial running time. In the case that the non-parametric problem can be solved exactly in polynomial time or that an FPTAS is available, the method yields an FPTAS. In particular, under mild assumptions, we obtain the first parametric FPTAS for each of the specific problems mentioned above and a (3/2 + ε) -approximation algorithm for the parametric metric traveling salesman problem. Moreover, we describe a post-processing procedure that, if the non-parametric problem can be solved exactly in polynomial time, further decreases the number of returned solutions such that the method outputs at most twice as many solutions as needed at minimum for achieving the desired approximation guarantee
    corecore