2,835 research outputs found
Chemical engineering design of CO oxidation catalysts
How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture
CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts
Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials
Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts
The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials
Design of catalytic monoliths for closed-cycle carbon dioxide lasers
A computer program was written that allows the design of catalytic monoliths for closed-cycle carbon dioxide lasers. Using design parameters obtained from workers at NASA Langley Research Center and from the literature, several specific monoliths were designed and the results were communicated to the research group working on this project at Langley. Two oral presentations were made at NASA-sponsored workshops - at Langley in January 1988 and in Gainesville, Florida in May 1988
Monolith catalysts for closed-cycle carbon dioxide lasers
The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations
Design of catalytic monoliths for closed-cycle carbon dioxide lasers
Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given
Behavioral Outcomes in Children with Autism Spectrum Disorder and Cochlear Implants
The purpose of this literature review was to establish what is currently known about behavioral outcomes of children with Autism Spectrum Disorder (ASD) and cochlear implants (CIs). Sixteen articles were included in this review. The areas investigated were behavioral changes postimplantation, as determined by subjective and objective measures, mode of communication used by children with ASD and CIs, and effects of additional comorbidities on these outcomes. Considerations for CI use for children with ASD include potential hypersensitivity to auditory stimuli, inability to complete performance measures, and markedly slower progress than their typically developing peers. Many of the studies included in this review show that children with ASD and hearing loss can benefit from CI use. On subjective measures, improvements in reaction to sounds, name, and music, as well as reduced anxiety were reported by parents or caregivers, while objective measures showed no change, or an increase in behaviors postimplantation. The greatest number of children used a combination of communication modalities (37.4%), followed by oral language (34.1%). The results of this literature review indicate that the behavioral aspects of CI in children with ASD require further investigation
Monolith catalysts for closed-cycle carbon dioxide lasers
The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts
Energy-efficient coding with discrete stochastic events
We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information
Optimal Population Codes for Space: Grid Cells Outperform Place Cells
Rodents use two distinct neuronal coordinate systems to estimate their position: place fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells spike at only one particular spatial location, grid cells fire at multiple sites that correspond to the points of an imaginary hexagonal lattice. We study how to best construct place and grid codes, taking the probabilistic nature of neural spiking into account. Which spatial encoding properties of individual neurons confer the highest resolution when decoding the animal’s position from the neuronal population response? A priori, estimating a spatial position from a grid code could be ambiguous, as regular periodic lattices possess translational symmetry. The solution to this problem requires lattices for grid cells with different spacings; the spatial resolution crucially depends on choosing the right ratios of these spacings across the population. We compute the expected error in estimating the position in both the asymptotic limit, using Fisher information, and for low spike counts, using maximum likelihood estimation. Achieving high spatial resolution and covering a large range of space in a grid code leads to a trade-off: the best grid code for spatial resolution is built of nested modules with different spatial periods, one inside the other, whereas maximizing the spatial range requires distinct spatial periods that are pairwisely incommensurate. Optimizing the spatial resolution predicts two grid cell properties that have been experimentally observed. First, short lattice spacings should outnumber long lattice spacings. Second, the grid code should be self-similar across different lattice spacings, so that the grid field always covers a fixed fraction of the lattice period. If these conditions are satisfied and the spatial “tuning curves” for each neuron span the same range of firing rates, then the resolution of the grid code easily exceeds that of the best possible place code with the same number of neurons
- …