3 research outputs found

    Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction:

    Get PDF
    A two-dimensional photonic crystal (PhC) slab was fabricated from a luminescent planar waveguide, formed by a (800 nm thick) layer of silicon nanocrystals (SiNCs) embedded in a polished silica plate. Dimensions of the PhC were designed so that light emitted by SiNCs under excitation with an external UV source can, during its propagation in the layer, interact with the periodicity and be Bragg-diffracted into air. This approach leads to up to 8-fold vertical extraction enhancement of SiNCs luminescence from the PhC slab compared to the bare planar layer. Results of the experiment are supported by the computer simulation. (C) 2013 AIP Publishing LLC

    Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain:

    Get PDF
    We collect a large number of experimental data from various sources to demonstrate that free-standing (FS) oxide-passivated silicon nanocrystals (SiNCs) exhibit considerably blueshifted emission, by 200 meV on average, compared to those prepared as matrix-embedded (ME) ones of the same size. This is suggested to arise from compressive strain, exerted on the nanocrystals by their matrix, which plays an important role in the light-emission process; this strain has been neglected up to now as opposed to the impact of quantum confinement or surface passivation. Our conclusion is also supported by the comparison of low-temperature behavior of photoluminescence of matrix-embedded and free-standing silicon nanocrystals
    corecore