3,825 research outputs found

    Life Products of Stars

    Get PDF
    We attempt to document complete energetic transactions of stars in their life. We calculate photon and neutrino energies that are produced from stars in their each phase of evolution from 1 to 8 M_sun, using the state-of-the-art stellar evolution code, tracing the evolution continuously from pre-main sequence gravitational contraction to white dwarfs. We also catalogue gravitational and thermal energies and helium, and heavier elements that are stored in stars and those ejected into interstellar space in each evolutionary phase.Comment: 26 pages, including 8 figures and 3 tables. Submitted to ApJ

    The s-Process in Rotating Asymptotic Giant Branch Stars

    Full text link
    (abridged) We model the nucleosynthesis during the thermal pulse phase of a rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core where large amounts of protons and C12 co-exist. We follow the abundance evolution in this layer, in particular that of the neutron source C13 and of the neutron poison N14. In our AGB model mixing persists during the entire interpulse phase due to the steep angular velocity gradient at the core-envelope interface. We follow the neutron production during the interpulse phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1, which is too small to produce any significant s-process. In parametric models, we then investigate the combined effects of diffusive overshooting from the convective envelope and rotationally induced mixing. Models with overshoot and weaker interpulse mixing - as perhaps expected from more slowly rotating stars - yield larger neutron exposures. We conclude that the incorporation of rotationally induce mixing processes has important consequences for the production of heavy elements in AGB stars. Through a distribution of initial rotation rates it may lead to a natural spread in the neutron exposures obtained in AGB stars of a given mass - as appears to be required by observations. Our results suggest that both processes, diffusive overshoot and rotational mixing, may be required to obtain a consistent description of the s-process in AGB stars which fulfils all observational constraints. Finally, we find that mixing due to rotation within our current framework does increase the production of N15 in the partial mixing zone, however still falling short of what seems required by observations.Comment: 50 pages, 13 figures, ApJ in press, tentatively scheduled for v593 n2 August 20, 200

    Quasi-Stationary Approximation of a Dynamical Model of MicroRNA Target Regulation. Part II. Application of the QSSA Theorem

    Get PDF
    The QSSA theorem is applied to the dynamical model of microRNA target regulation after special selection of model variables, presented in Part I of this article. On the basis of this theorem the complete model, represented as a system of seven nonlinear ordinary differential equations, is reduced to a degenerate one, comprising only two ordinary differential equations. As a result it is proved that the proteins, produced by miRNAs are identified to play a driving role of the dynamical behaviour of the genetic process investigated, but in post-initial (or quasi-stationary) stage

    Quasi-Stationary Approximation of a Dynamical Model of microRNA Target Regulation. Part I. Establishment of Time Hierarchy in the Model Dynamics

    Get PDF
    The Quasi-Steady-State Approximation (QSSA) theorem is considered as a basic approach for reduction of dimensionality of a dynamical model of microRNA target regulation. On the basis of previously determined parameters, seven ordinary differential equations of the model are written in a form appropriate to evaluate their terms for further reduction. In accordance with the terminology of the QSSA theorem, it is established that five of the system components are fast varying such that the corresponding kinetic equations form an attached system. The other two variables are slow varying and their kinetic equations form a degenerate system

    Simulation of Cosmic Ray neutrinos Interactions in Water

    Full text link
    The program CORSIKA, usually used to simulate extensive cosmic ray air showers, has been adapted to a water medium in order to study the acoustic detection of ultra high energy neutrinos. Showers in water from incident protons and from neutrinos have been generated and their properties are described. The results obtained from CORSIKA are compared to those from other available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA Workshop 200

    Neutron-Capture Elements in the Double-Enhanced Star HE 1305-0007: a New s- and r-Process Paradigm

    Full text link
    The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] =2.0=-2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find that almost all s-elements were made in a single neutron exposure. This star should be a member of a post-common-envelope binary. After the s-process material has experienced only one neutron exposure in the nucleosynthesis region and is dredged-up to its envelope, the AGB evolution is terminated by the onset of common-envelope evolution. Based on the high radial-velocity of HE 1305-0007, we speculate that the star could be a runaway star from a binary system, in which the AIC event has occurred and produced the r-process elements.Comment: 4 pages, 3 figures, paper accepted for publication in Chinese Physics letter

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    Turbulence in porous media: Some fundamental questions addressed by DNS solutions

    Get PDF
    In a generic porous matrix built by a large number of rectangular bars the flow is determined numerically by a DNS approach. Turbulent flow is thus simulated avoiding modelling in order to decide whether turbulent structures with scales much larger than the pore scale exist. So far only under-resolved DNS solutions are determined from which, however, definite conclusions with respect to the maximum turbulent length scale can be drawn

    Evolutionary stage of the spectral variable BD+48 1220=IRAS 05040+4820

    Full text link
    Based on high-resolution observations (R=60000 and 75000), we have studied the optical spectral variability of the star BD+48 1220 (IRAS05040+4820). We have measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths from 4500 to 6760 AA, as well as the corresponding radial velocities. We use model atmospheres to determine Teff=7900K, log g=0.0, microturbulence velocity xi_t=6.0, and the abundances for 16 elements. The star's metallicity differs little from the solar value: [Fe/H]=-0.10 dex. The main peculiarity of the chemical composition of the star is a large He-excess, derived from the HeI 5876 A absorption, [He/H]=+1.04, and the equally large O-excess, [O/Fe]=+0.72 dex. The C-excess is small, [C/Fe]=+0.09 dex, and the ratio [C/O]\le 1. We obtained a revised relation for the light-metal abundances: [Na/Fe]=+0.87 with [Mg/Fe]=-0.31. The barium abundance is low, [Ba/Fe]=-0.84. The radial velocity of the star measured from photospheric absorption lines over three years of observations varies in the interval V_sun = -(7 - 15) km/s. Time variable differential line shifts have been revealed. The entire set of available data (the luminosity Mv~-5m, velocity V_lsr~-20 km/s, metallicity [Fe/H]=-0.10, and peculiarities of the optical spectrum and chemical composition) confirms the status of BD+48 1220 as a post-AGB star with He- and O-excesses belonging to the Galactic disk.Comment: 42 pages, 7 figures, 6 tables, accepted by Astronomy Report
    corecore