133 research outputs found

    TG6 auto-antibodies in dermatitis herpetiformis

    Get PDF
    Dermatitis herpetiformis (DH) is an extraintestinal manifestation of gluten sensitivity, in which an autoimmune response is directed against transglutaminase 3 (TG3), an epidermal transglutaminase. TG2 is the autoantigen in celiac disease (CD), defined by the presence of enteropathy, and TG6 is the autoantigen in neurological manifestations of gluten sensitivity. The interplay between B cell responses to these 3 transglutaminases in developing the clinical spectrum of disease manifestations is not completely understood. Also, the individual or combined diagnostic and predictive value of the respective autoantibodies is not fully explored. We examined the prevalence of TG6 antibodies in a cohort of patients with DH. TG6 positivity was found in 13/33 (39%), with IgA detected in 11 patients, IgG in 3, and both in 1. This was significantly higher compared to what is seen in the classic CD cases (14%) in a Finnish population. TG6 positive baseline samples constituted 60% of DH patients with no enteropathy (n = 10), as opposed to 17% positivity in those with overt enteropathy (n = 12; Marsh IIIB). Repeat testing after adherence to a gluten-free diet for 1 year showed reduced titers for TG6 antibodies in 11/13 (85%), whereby 7 patients were now TG6 antibody-negative. Four patients seroconverted and tested positive for TG6 antibodies at one year, due to the ongoing exposure to gluten. We report another patient who presented with neurological manifestations (encephalopathy) leading to the diagnosis of CD, who was intermittently adhering to a gluten-free diet. Serological testing at baseline showed him to be positive for antibodies to all 3 transglutaminases. Eleven years later, he developed DH. He also subsequently developed ataxia and peripheral neuropathy. Although TG3 and TG6 autoantibodies are linked to certain disease manifestations, TG2, TG3, and TG6 autoantibodies can be present across the spectrum of GRD patients and might develop years before onset of symptoms of extraintestinal manifestations. This is consistent with gluten-dependent adaptive immunity being a necessary but not sufficient pretext to organ-specific damage. TG6 antibodies appear to develop more frequently in patients where tolerance to gluten was broken but, either there was no development of the molecular state driving the tissue destruction at the level of the gut, or perhaps more likely, there was more resistance to developing this phenotype

    Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARKAGE Study

    Get PDF
    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly

    Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study

    Get PDF
    Aging is associated with alterations in the content and patterns of DNA methylation virtually throughout the entire human lifespan. Reasons for these variations are not well understood. However, several lines of evidence suggest that the epigenetic instability in aging may be traced back to the alteration of the expression of DNA methyltransferases. Here, the association of the expression of DNA methyltransferases DNMT1 and DNMT3B with age has been analysed in the context of the MARK-AGE study, a large-scale cross-sectional study of the European general population. Using peripheral blood mononuclear cells, we assessed the variation of DNMT1 and DNMT3B gene expression in more than two thousand age-stratified women and men (35-75 years) recruited across eight European countries. Significant age-related changes were detected for both transcripts. The level of DNMT1 gradually dropped with aging but this was only observed up to the age of 64 years. By contrast, the expression of DNMT3B decreased linearly with increasing age and this association was particularly evident in females. We next attempted to trace the age-related changes of both transcripts to the influence of different variables that have an impact on changes of their expression in the population, including demographics, dietary and health habits, and clinical parameters. Our results indicate that age affects the expression of DNMT1 and DNMT3B as an almost independent variable in respect of all other variables evaluated

    Nutritional Factors Modulating Alu Methylation inan Italian Sample from The Mark-Age StudyIncluding Offspring of Healthy Nonagenarians

    Get PDF
    Alu hypomethylation promotes genomic instability and is associated with aging and age-related diseases. Dietary factors affect global DNA methylation, leading to changes in genomic stability and gene expression with an impact on longevity and the risk of disease. This preliminary study aims to investigate the relationship between nutritional factors, such as circulating trace elements, lipids and antioxidants, and Alu methylation in elderly subjects and offspring of healthy nonagenarians. Alu DNA methylation was analyzed in sixty RASIG (randomly recruited age-stratified individuals from the general population) and thirty-two GO (GeHA offspring) enrolled in Italy in the framework of the MARK-AGE project. Factor analysis revealed a different clustering between Alu CpG1 and the other CpG sites. RASIG over 65 years showed lower Alu CpG1 methylation than those of GO subjects in the same age class. Moreover, Alu CpG1 methylation was associated with fruit and whole-grain bread consumption, LDL2-Cholesterol and plasma copper. The preserved Alu methylation status in GO, suggests Alu epigenetic changes as a potential marker of aging. Our preliminary investigation shows that Alu methylation may be affected by food rich in fibers and antioxidants, or circulating LDL subfractions and plasma copper

    Association between fat-soluble vitamins and self-reported health status: A cross-sectional analysis of the MARK-AGE cohort

    Get PDF
    Self-rated health (SRH) is associated with higher risk of death. Since low plasma levels of fat-soluble vitamins are related to mortality, we aimed to assess whether plasma concentrations of vitamins A, D and E were associated with SRH in the MARK-AGE study. We included 3158 participants (52% female) aged between 35-75 years. Cross-sectional data were collected via questionnaires. An enzyme immunoassay quantified 25-hydroxyvitamin D and HPLC determined α-tocopherol and retinol plasma concentrations. The median 25-hydroxyvitamin D and retinol concentrations differed significantly (P<0.001) between SRH categories, and were lower in the combined fair/poor category versus the excellent, very good, good categories (25-hydroxvitamin D: 40.8 vs. 51.9, 49.3, 46.7 nmol/l, respectively; retinol: 1.67 vs. 1.75, 1.74, 1.70 μmol/l, respectively). Both vitamin D and retinol status were independently associated with fair/poor SRH in multiple regression analyses: adjusted ORs (95% CI) for the vitamin D insufficiency, deficiency, severe deficiency categories were 1.33 (1.06-1.68), 1.50 (1.17-1.93), and 1.83 (1.34-2.50) respectively; P=0.015, P=0.001, P<0.001, and for the second/third/fourth retinol quartiles: 1.44 (1.18-1.75), 1.57 (1.28-1.93), 1.49 (1.20-1.84); all P<0.001. No significant associations were reported for α-tocopherol quartiles. Lower vitamin A and D status emerged as independent markers for fair/poor SRH. Further insights into the long-term implications of these modifiable nutrients on health status are warranted

    Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association With Redox Biomarkers: Results From MARK-AGE Study

    Get PDF
    Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI >= 2 compared with those with CCI <= 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants

    Association of Torquetenovirus Viremia with Physical Frailty and Cognitive Impairment in Three Independent European Cohorts

    Get PDF
    Introduction: Immunosenescence and inflammaging have been implicated in the pathophysiology of frailty. Torquetenovirus (TTV), a single-stranded DNA anellovirus, the major component of the human blood virome, shows an increased replication rate with advancing age. An elevated TTV viremia has been associated with an impaired immune function and an increased risk of mortality in the older population. The objective of this study was to analyze the relation between TTV viremia, physical frailty, and cognitive impairment. Methods: TTV viremia was measured in 1,131 nonfrail, 45 physically frail, and 113 cognitively impaired older adults recruited in the MARK-AGE study (overall mean age 64.7 ± 5.9 years), and then the results were checked in two other independent cohorts from Spain and Portugal, including 126 frail, 252 prefrail, and 141 nonfrail individuals (overall mean age: 77.5 ± 8.3 years). Results: TTV viremia ≥4log was associated with physical frailty (OR: 4.69; 95% CI: 2.06-10.67, p < 0.0001) and cognitive impairment (OR: 3.49, 95% CI: 2.14-5.69, p < 0.0001) in the MARK-AGE population. The association between TTV DNA load and frailty status was confirmed in the Spanish cohort, while a slight association with cognitive impairment was observed (OR: 1.33; 95% CI: 1.000-1.773), only in the unadjusted model. No association between TTV load and frailty or cognitive impairment was found in the Portuguese sample, although a negative association between TTV viremia and MMSE score was observed in Spanish and Portuguese females. Conclusions: These findings demonstrate an association between TTV viremia and physical frailty, while the association with cognitive impairment was observed only in the younger population from the MARK-AGE study. Further research is necessary to clarify TTV's clinical relevance in the onset and progression of frailty and cognitive decline in older individuals

    Differentiation in Neuroblastoma: Diffusion-Limited Hypoxia Induces Neuro-Endocrine Secretory Protein 55 and Other Markers of a Chromaffin Phenotype

    Get PDF
    Background: Neuroblastoma is a childhood malignancy of sympathetic embryonal origin. A high potential for differentiation is a hallmark of neuroblastoma cells. We have previously presented data to suggest that in situ differentiation in tumors frequently proceeds along the chromaffin lineage and that decreased oxygen ( hypoxia) plays a role in this. Here we explore the utility of Neuro-Endocrine Secretory Protein 55 ( NESP55), a novel member of the chromogranin family, as a marker for this process.Methodology/Principal Findings: Immunohistochemical analyses and in situ hybridizations were performed on human fetal tissues, mouse xenografts of human neuroblastoma cell lines, and on specimens of human neuroblastoma/ganglioneuroma. Effects of anaerobic exposure on gene expression by cultured neuroblastoma cells was analyzed with quantitative real-time PCR. Fetal sympathetic nervous system expression of NESP55 was shown to be specific for chromaffin cell types. In experimental and clinical neuroblastoma NESP55 immunoreactivity was specific for regions of chronic hypoxia. NESP55 expression also correlated strikingly with morphological evidence of differentiation and with other chromaffin-specific patterns of gene expression, including IGF2 and HIF2 alpha. Anaerobic culture of five neuroblastoma cell lines resulted in an 18.9-fold mean up-regulation of NESP55.Conclusions/Significance: The data confirms that chronic tumor hypoxia is a key microenvironmental factor for neuroblastoma cell differentiation, causing induction of chromaffin features and NESP55 provides a reliable marker for this neuronal to neuroendocrine transition. The hypoxia-induced phenotype is the predominant form of differentiation in stroma-poor tumors, while in stroma-rich tumors the chromaffin phenotype coexists with ganglion cell-like differentiation. The findings provide new insights into the biological diversity which is a striking feature of this group of tumors

    The clinical impact of using complex molecular profiling strategies in routine oncology practice

    Get PDF
    Molecular profiling and functional assessment of signalling pathways of advanced solid tumours are becoming increasingly available. However, their clinical utility in guiding patients’ treatment remains unknown. Here, we assessed whether molecular profiling helps physicians in therapeutic decision making by analysing the molecular profiles of 1057 advanced cancer patient samples after failing at least one standard of care treatment using a combination of next-generation sequencing (NGS), immunohistochemistry (IHC) and other specific tests. The resulting information was interpreted and personalized treatments for each patient were suggested. Our data showed that NGS alone provided the oncologist with useful information in 10–50% of cases (depending on cancer type), whereas the addition of IHC/other tests increased extensively the usefulness of the information provided. Using internet surveys, we investigated how therapy recommendations influenced treatment choice of the oncologist. For patients who were still alive after the provision of the molecular information (76.8%), 60.4% of their oncologists followed report recommendations. Most treatment decisions (93.4%) were made based on the combination of NGS and IHC/other tests, and an approved drug- rather than clinical trial enrolment- was the main treatment choice. Most common reasons given by physicians to explain the non-adherence to recommendations were drug availability and cost, which remain barriers to personalised precision medicine. Finally, we observed that 27% of patients treated with the suggested therapies had an overall survival > 12 months. Our study demonstrates that the combination of NGS and IHC/other tests provides the most useful information in aiding treatment decisions by oncologists in routine clinical practice

    In Vivo Methods to Study Uptake of Nanoparticles into the Brain

    Get PDF
    Several in vivo techniques have been developed to study and measure the uptake of CNS compounds into the brain. With these techniques, various parameters can be determined after drug administration, including the blood-to-brain influx constant (Kin), the permeability-surface area (PS) product, and the brain uptake index (BUI). These techniques have been mostly used for drugs that are expected to enter the brain via transmembrane diffusion or by carrier-mediated transcytosis. Drugs that have limitations in entering the brain via such pathways have been encapsulated in nanoparticles (based on lipids or synthetic polymers) to enhance brain uptake. Nanoparticles are different from CNS compounds in size, composition and uptake mechanisms. This has led to different methods and approaches to study brain uptake in vivo. Here we discuss the techniques generally used to measure nanoparticle uptake in addition to the techniques used for CNS compounds. Techniques include visualization methods, behavioral tests, and quantitative methods
    corecore