34 research outputs found
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Gas exchange during acute respiratory failure in patients with chronic obstructive pulmonary disease
info:eu-repo/semantics/publishe
EFFECTS OF A BASKETBALL ACTIVITY ON LUNG CAPILLARY BLOOD VOLUME AND MEMBRANE DIFFUSING CAPACITY, MEASURED BY NO/CO TRANSFER IN CHILDREN
In both children and adults, acute exercise increases lung capillary blood volume (Vc) and membrane factor (DmCO). We sought to determine whether basketball training affected this adaptation to exercise in children. The purpose of this study was to determine the effects of two years sport activity on the components of pulmonary gas transfer in children. Over a 2-yr period, we retested 60 nine year old boys who were initially separated in two groups: 30 basketball players (P) (9.0 ± 1.0 yrs; 35.0 ± 5.2 kg; 1.43 ± 0.05 m), and matched non players controls (C) (8.9 ± 1.0 yrs; 35.0 ± 6.0 kg; 1.44 ± 0.06 m) who did not perform any extracurricular activity, Vc and DmCO were measured by the NO/CO transfer method at rest and during sub-maximal exercise. Maximal aerobic power and peak power output was 12% higher in the trained group compared to matched controls (p < 0.05). Nitric oxide lung transfer (TLNO) per unit lung volume and thus, DmCO per unit of lung volume (VA) were higher at rest and during exercise in the group which had undergone regular basketball activity compared to matched controls (p < 0.05). Neither lung capillary blood volume nor total lung transfer for carbon monoxide (TLCO) were significantly different between groups. These results suggest that active sport can alter the properties of the lung alveolo-capillary membrane by improving alveolar membrane conductance in childre
Echocardiographic and Tissue Doppler Imaging of Cardiac Adaptation to High Altitude in Native Highlanders Versus Acclimatized Lowlanders
High-altitude exposure is a cause of pulmonary hypertension and decreased exercise capacity, but associated changes in cardiac function remain incompletely understood. The aim of this study was to investigate right ventricular (RV) and left ventricular function in acclimatized Caucasian lowlanders compared with native Bolivian highlanders at high altitudes. Standard echocardiography and tissue Doppler imaging studies were performed in 15 healthy lowlanders at sea level; <24 hours after arrival in La Paz, Bolivia, at 3,750 m; and after 10 days of acclimatization and ascent to Huayna Potosi, at 4,850 m, and the results were compared with those obtained in 15 age- and body size-matched inhabitants of Oruro, Bolivia, at 4,000 m. Acute exposure to high altitude in lowlanders caused an increase in mean pulmonary arterial pressure, to 20 to 25 mm Hg, and altered RV and left ventricular diastolic function, with prolonged isovolumic relaxation time, an increased RV Tei index, and maintained RV systolic function as estimated by tricuspid annular plane excursion and the tricuspid annular S wave. This profile was essentially unchanged after acclimatization and ascent to 4,850 m, except for higher pulmonary arterial pressure. The native highlanders presented with relatively lower pulmonary arterial pressures but more pronounced alterations in diastolic function, decreased tricuspid annular plane excursion and tricuspid annular S waves, and increased RV Tei indexes. In conclusion, cardiac adaptation to high altitude was qualitatively similar in acclimatized Caucasian lowlanders and in Bolivian native highlanders. However, lifelong exposure to high altitude may be associated with different cardiac adaptation to milder hypoxic pulmonary hypertension. © 2009 Elsevier Inc. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Functional
The study was carried out to investigate the effects of inhaled Mg alone and associated with F in the treatment of bronchial hyperresponsiveness. 43 male Wistar rats were randomly divided into four groups and exposed to inhaled NaCl 0.9%, MeCh, MgSO4 and MgF2. Pulmonary changes were assessed by means of functional tests and quantitative histological examination of lungs and trachea. Results revealed that delivery of inhaled Mg associated with F led to a significant decrease of total lung resistance better than inhaled Mg alone (p < 0.05). Histological examinations illustrated that inhaled Mg associated with F markedly suppressed muscular hypertrophy (p = 0.034) and bronchoconstriction (p = 0.006) in MeCh treated rats better than inhaled Mg alone. No histological changes were found in the trachea. This study showed that inhaled Mg associated with F attenuated the main principle of the central components of changes in MeCh provoked experimental asthma better than inhaled Mg alone, potentially providing a new therapeutic approach against asthma
Nitrogen monoxide and carbon monoxide transfer interpretation: state of the art.
Just a few clinicians routinely measure the subcomponents of the lung diffusing capacity for Carbone monoxide (DL ). This is because the measurement of membrane and blood conductances for CO (Dm and Db = θ × V , respectively) by the classic Roughton and Forster method is complicated and time consuming. In addition, it mistakenly assumes a close relationship between alveolar oxygen partial pressure (PAO ) and mean intracapillary oxygen partial pressure (PcapO ) which is the true determinant of specific conductance of haemoglobin for CO (θ ). Besides that, the critical multistep oxygenation method along with different linear equations relating 1/θ to PcapO gave highly scattered Dm and V values. The Dm and V can also be derived from a simultaneous measurement of DL and DL with the blood resistance for NO assumed to be negligible. However, recent in vitro and in vivo experiments point towards a finite value of θ (about 4·5 ml × ml × min × mmHg ). Putting together the arguments and our clinical data allows us to report here the state of the art in partitioning the CO diffusing capacity into its constitutive components, with the goal to encourage further studies examining the sensitivity of Dm and V to alterations observed in parenchymal diseases
Effects of sildenafil on exercise capacity at 5000m altitude on mount Chimborazo
info:eu-repo/semantics/nonPublishe
In vivo estimates of NO and CO conductance for haemoglobin and for lung transfer in humans
International audienceMembrane conductance (Dm) and capillary lung volume (Vc) derived from NO and CO lung transfer measurements in humans depend on the blood conductance (θ) values of both gases. Many θ values have been proposed in the literature. In the present study, measurements of CO and NO transfer while breathing 15% or 21% O2 allowed the estimation of θNO and the calculation of the optimal equation relating 1/θCO to pulmonary capillary oxygen pressure (PcapO2). In 10 healthy subjects, the mean calculated θNO value was similar to the θNO value previously reported in the literature (4.5mmHgmin(-1)) provided that one among three θCO equations from the literature was chosen. Setting 1/θCO=a·PcapO2+b, optimal values of a and b could be chosen using two methods: 1) by minimizing the difference between Dm/Vc ratios for any PcapO2, 2) by establishing a linear equation relating a and b. Using these methods, we are proposing the equation 1/θCO=0.0062·PcapO2+1.16, which is similar to two equations previously reported in the literature. With this set of θ values, DmCO reached the morphometric range