1,578 research outputs found
New energy conversion techniques in space, applicable to propulsion
The powering of aircraft with laser energy from a solar power satellite may be a promising new approach to the critical problem of the rising cost of fuel for aircraft transportation systems. The result is a nearly fuelless, pollution-free flight transportation system which is cost-competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser power satellite, relay satellites, laser-powered turbofans and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target
Orbit transfer rocket engine technology program: Automated preflight methods concept definition
The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment
Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator
New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report
Do Dark Matter Axions Form a Condensate with Long-Range Correlation?
Recently there has been significant interest in the claim that dark matter
axions gravitationally thermalize and form a Bose-Einstein condensate with
cosmologically long-range correlation. This has potential consequences for
galactic scale observations. Here we critically examine this claim. We point
out that there is an essential difference between the thermalization and
formation of a condensate due to repulsive interactions, which can indeed drive
long-range order, and that due to attractive interactions, which can lead to
localized Bose clumps (stars or solitons) that only exhibit short range
correlation. While the difference between repulsion and attraction is not
present in the standard collisional Boltzmann equation, we argue that it is
essential to the field theory dynamics, and we explain why the latter analysis
is appropriate for a condensate. Since the axion is primarily governed by
attractive interactions -- gravitation and scalar-scalar contact interactions
-- we conclude that while a Bose-Einstein condensate is formed, the claim of
long-range correlation is unjustified.Comment: New version matches the version to be published in Physical Review D
and includes a clarification about the non-relativistic limi
Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater
The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion
Pistons modeled by potentials
In this article we consider a piston modelled by a potential in the presence
of extra dimensions. We analyze the functional determinant and the Casimir
effect for this configuration. In order to compute the determinant and Casimir
force we employ the zeta function scheme. Essentially, the computation reduces
to the analysis of the zeta function associated with a scalar field living on
an interval in a background potential. Although, as a model for a
piston, it seems reasonable to assume a potential having compact support within
, we provide a formalism that can be applied to any sufficiently smooth
potential.Comment: 10 pages, LaTeX. A typo in eq. (3.5) has been corrected. In
"Cosmology, Quantum Vacuum and Zeta Functions: In Honour of Emilio Elizalde",
Eds. S.D. Odintsov, D. Saez-Gomez, and S. Xambo-Descamps. (Springer 2011) pp
31
- …