1,021 research outputs found
Self-cooling of a micro-mirror by radiation pressure
We demonstrate passive feedback cooling of a mechanical resonator based on
radiation pressure forces and assisted by photothermal forces in a high-finesse
optical cavity. The resonator is a free-standing high-reflectance micro-mirror
(of mass m=400ng and mechanical quality factor Q=10^4) that is used as
back-mirror in a detuned Fabry-Perot cavity of optical finesse F=500. We
observe an increased damping in the dynamics of the mechanical oscillator by a
factor of 30 and a corresponding cooling of the oscillator modes below 10 K
starting from room temperature. This effect is an important ingredient for
recently proposed schemes to prepare quantum entanglement of macroscopic
mechanical oscillators.Comment: 11 pages, 9 figures, minor correction
Attractive Casimir Forces in a Closed Geometry
We study the Casimir force acting on a conducting piston with arbitrary cross
section. We find the exact solution for a rectangular cross section and the
first three terms in the asymptotic expansion for small height to width ratio
when the cross section is arbitrary. Though weakened by the presence of the
walls, the Casimir force turns out to be always attractive. Claims of repulsive
Casimir forces for related configurations, like the cube, are invalidated by
cutoff dependence.Comment: An updated version to coincide with the one published December 2005
in PRL. 4 pages, 2 figure
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
The Effective Field Theory of Cosmological Large Scale Structures
Large scale structure surveys will likely become the next leading
cosmological probe. In our universe, matter perturbations are large on short
distances and small at long scales, i.e. strongly coupled in the UV and weakly
coupled in the IR. To make precise analytical predictions on large scales, we
develop an effective field theory formulated in terms of an IR effective fluid
characterized by several parameters, such as speed of sound and viscosity.
These parameters, determined by the UV physics described by the Boltzmann
equation, are measured from N-body simulations. We find that the speed of sound
of the effective fluid is c_s^2 10^(-6) and that the viscosity contributions
are of the same order. The fluid describes all the relevant physics at long
scales k and permits a manifestly convergent perturbative expansion in the size
of the matter perturbations \delta(k) for all the observables. As an example,
we calculate the correction to the power spectrum at order \delta(k)^4. The
predictions of the effective field theory are found to be in much better
agreement with observation than standard cosmological perturbation theory,
already reaching percent precision at this order up to a relatively short scale
k \sim 0.24 h/Mpc.Comment: v2: typos corrected, JHEP published versio
Casimir interaction: pistons and cavity
The energy of a perfectly conducting rectangular cavity is studied by making
use of pistons' interactions. The exact solution for a 3D perfectly conducting
piston with an arbitrary cross section is being discussed.Comment: 10 pages, 2 figures, latex2
Comment on the sign of the Casimir force
I show that reflection positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is attractive. This
generalizes a recent theorem of Kenneth and Klich to interacting quantum
fields, to arbitrary semiclassical bodies, and to quantized probes with
non-overlapping wavefunctions. I also prove that the torques on
charge-conjugate probes tend always to rotate them into a mirror-symmetric
position.Comment: 13 pages, 1 figure, Latex file. Several points clarified and
expanded, two references added
Stability Constraints on Classical de Sitter Vacua
We present further no-go theorems for classical de Sitter vacua in Type II
string theory, i.e., de Sitter constructions that do not invoke
non-perturbative effects or explicit supersymmetry breaking localized sources.
By analyzing the stability of the 4D potential arising from compactification on
manfiolds with curvature, fluxes, and orientifold planes, we found that
additional ingredients, beyond the minimal ones presented so far, are necessary
to avoid the presence of unstable modes. We enumerate the minimal setups for
(meta)stable de Sitter vacua to arise in this context.Comment: 18 pages; v2: argument improved, references adde
- …