16 research outputs found

    Intercellular Communication in Tumor Biology: A Role for Mitochondrial Transfer

    Full text link
    Intercellular communication between cancer cells and other cells in the tumor microenvironment plays a defining role in tumor development. Tumors contain infiltrates of stromal cells and immune cells that can either promote or inhibit tumor growth, depending on the cytokine/chemokine milieu of the tumor microenvironment and their effect on cell activation status. Recent research has shown that stromal cells can also affect tumor growth through the donation of mitochondria to respiration-deficient tumor cells, restoring normal respiration. Nuclear and mitochondrial DNA mutations affecting mitochondrial respiration lead to some level of respiratory incompetence, forcing cells to generate more energy by glycolysis. Highly glycolytic cancer cells tend to be very aggressive and invasive with poor patient prognosis. However, purely glycolytic cancer cells devoid of mitochondrial DNA cannot form tumors unless they acquire mitochondrial DNA from adjacent cells. This perspective article will address this apparent conundrum of highly glycolytic cells and cover aspects of intercellular communication between tumor cells and cells of the microenvironment with particular emphasis on intercellular mitochondrial transfer

    Functional Mitochondria in Health and Disease

    Full text link
    The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies

    The anti-cancer drug, phenoxodiol, kills primary myeloid and lymphoid leukemic blasts and rapidly proliferating T cells

    Full text link
    The plasma electron transport system is a relatively newly-discovered potential target for anti-leukemia drugs. In this paper Herst and coworkers describe the effects of phenoxodiol, an inhibitor of this pathway on leukemia cell lines and primary as well as on resting and activated T cells. The ability of phenoxodiol to kill rapidly proliferating lymphocytes might make this drug a promising candidate for the treatment of pathologically-activated lymphocytes

    Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits

    Full text link
    Most investigations into plasma membrane electron transport (PMET) in Saccharomyces cerevisiae have focused on the inducible ferric reductase responsible for iron uptake under iron/copper-limiting conditions. In this paper, we describe a PMET system, distinct from ferric reductase, which reduces the cell-impermeable water-soluble tetrazolium dye, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium monosodium salt (WST-1), under normal iron/copper conditions. WST-1/1-methoxy-phenazine methosulphate reduction was unaffected by anoxia and relatively insensitive to diphenyleneiodonium. Dye reduction was increased when intracellular NADH levels were high, which, in S. cerevisiae, required deletion of numerous genes associated with NADH recycling. Genome-wide screening of all viable nuclear gene-deletion mutants of S. cerevisiae revealed that, although mitochondrial electron transport per se was not required, the presence of several nuclear and mitochondrially encoded subunits of respiratory complexes III and IV was mandatory for PMET. This suggests some form of interaction between components of mitochondrial and plasma membrane electron transport. In support of this, mitochondrial tubular networks in S. cerevisiae were shown to be located in close proximity to the plasma membrane using confocal microscopy

    Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas.

    Get PDF
    BackgroundTumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy.AimTo investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2).ResultsPFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone.ConclusionIV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors

    The effect of PFC plus carbogen and carbogen alone on survival of mice with intracranial tumours who received a single dose of whole brain radiation.

    Full text link
    <p>Kaplan Meier curves were compiled from 3 separate experiments. Mice were randomly assigned to groups of 5 mice. Mice were left untreated (black line), given 4.5Gy of radiation (red line), breathing carbogen (95%O<sub>2</sub>/5%CO<sub>2</sub>) for 1h immediately prior to irradiation (green line) or injected IV with 1.5cc/kg of a 40% PFC emulsion in addition to breathing carbogen for one hour immediately prior to irradiation (blue line). Only data from animals that died from tumour progression were used. Data from animals that died from other causes were excluded.</p
    corecore