659 research outputs found

    Effect of the Coulomb repulsion on the {\it ac} transport through a quantum dot

    Full text link
    We calculate in a linear response the admittance of a quantum dot out of equilibrium. The interaction between two electrons with opposite spins simultaneously residing on the resonant level is modeled by an Anderson Hamiltonian. The electron correlations lead to the appearence of a new feature in the frequency dependence of the conductance. For certain parameter values there are two crossover frequencies between a capacitive and an inductive behavior of the imaginary part of the admittance. The experimental implications of the obtained results are briefly discussed.Comment: 13 pages, REVTEX 3.0, 2 .ps figures from [email protected], NUB-308

    Transport through Quantum Dots: Analytic Results from Integrability

    Full text link
    Recent experiments have probed quantum dots through transport measurements in the regime where they are described by a two lead Anderson model. In this paper we develop a new method to analytically compute for the first time the corresponding transport properties. This is done by using the exact solvability of the Anderson Hamiltonian, together with a generalization of the Landauer-Buttiker approach to integrable systems. The latter requires proper identification of scattering states, a complex and crucial step in our approach. In the Kondo regime, our results include the zero-field, finite temperature linear response conductance, as well as the zero-temperature, non-equilibrium conductance in an applied Zeeman field.Comment: 5 pages, 3 figure

    Quantum interference effects in p-Si1−xGex quantum wells

    Get PDF
    Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field

    Mesoscopic transport beyond linear response

    Full text link
    We present an approach to steady-state mesoscopic transport based on the maximum entropy principle formulation of nonequilibrium statistical mechanics. Our approach is not limited to the linear response regime. We show that this approach yields the quantization observed in the integer quantum Hall effect at large currents, which until now has been unexplained. We also predict new behaviors of non-local resistances at large currents in the presence of dirty contacts.Comment: 14 pages plus one figure (with an insert) (post-script codes appended), RevTeX 3.0, UCF-CM-93-004 (Revised

    Nonbackscattering Contribution to the Weak Localization

    Full text link
    We show that the enhancement of backscattering responsible for the weak localization is accompanied by reduction of the scattering in other directions. A simple quasiclassical interpretation of this phenomenon is presented in terms of a small change in the effective differential cross-section for a single impurity. The reduction of the scattering at the arbitrary angles leads to the decrease of the quantum correction to the conductivity. Within the diffusion approximation this decrease is small, but it should be taken into account in the case of a relatively strong magnetic field when the diffusion approximation is not valid.Comment: 18 pages, 6 figures, Submitted to PR

    Kondo effect in coupled quantum dots under magnetic fields

    Full text link
    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates peak structures of the Kondo resonant spectra. When the dot-dot tunneling coupling VCV_C is smaller than the dot-lead coupling Δ\Delta (level broadening), the Kondo resonant levels appear at the Fermi level (EFE_F). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When VCV_{C} is larger than Δ\Delta, the Kondo resonances form bonding and anti-bonding levels, located below and above EFE_F, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at EFE_F. In the presence of the antiferromagnetic spin coupling between the dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure

    Time-dependent DMRG Study on Quantum Dot under a Finite Bias Voltage

    Full text link
    Resonant tunneling through quantum dot under a finite bias voltage at zero temperature is investigated by using the adaptive time-dependent density matrix renormalization group(TdDMRG) method. Quantum dot is modeled by the Anderson Hamiltonian with the 1-D nearest-neighbor tight-binding leads. Initially the ground state wave function is calculated with the usual DMRG method. Then the time evolution of the wave function due to the slowly changing bias voltage between the two leads is calculated by using the TdDMRG technique. Even though the system size is finite, the expectation values of current operator show steady-like behavior for a finite time interval, in which the system is expected to resemble the real nonequilibrium steady state of the infinitely long system. We show that from the time intervals one can obtain quantitatively correct results for differential conductance in a wide range of bias voltage. Finally we observe an anomalous behavior in the expectation value of the double occupation operator at the dot as a function of bias voltage

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure

    Kondo Effect in Single Quantum Dot Systems --- Study with Numerical Renormalization Group Method ---

    Full text link
    The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region T \lsim 0.1 T_{K}^{*} \sim 0.2 T_{K}^{*}, where TK∗T_{K}^{*} is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.Comment: 22 pages, 18 figures, LaTeX, to be published in J. Phys. Soc. Jpn. Vol. 67 No. 7 (1998
    • …
    corecore