659 research outputs found
Effect of the Coulomb repulsion on the {\it ac} transport through a quantum dot
We calculate in a linear response the admittance of a quantum dot out of
equilibrium. The interaction between two electrons with opposite spins
simultaneously residing on the resonant level is modeled by an Anderson
Hamiltonian. The electron correlations lead to the appearence of a new feature
in the frequency dependence of the conductance. For certain parameter values
there are two crossover frequencies between a capacitive and an inductive
behavior of the imaginary part of the admittance. The experimental implications
of the obtained results are briefly discussed.Comment: 13 pages, REVTEX 3.0, 2 .ps figures from [email protected],
NUB-308
Transport through Quantum Dots: Analytic Results from Integrability
Recent experiments have probed quantum dots through transport measurements in
the regime where they are described by a two lead Anderson model. In this paper
we develop a new method to analytically compute for the first time the
corresponding transport properties. This is done by using the exact solvability
of the Anderson Hamiltonian, together with a generalization of the
Landauer-Buttiker approach to integrable systems. The latter requires proper
identification of scattering states, a complex and crucial step in our
approach. In the Kondo regime, our results include the zero-field, finite
temperature linear response conductance, as well as the zero-temperature,
non-equilibrium conductance in an applied Zeeman field.Comment: 5 pages, 3 figure
Quantum interference effects in p-Si1−xGex quantum wells
Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field
Mesoscopic transport beyond linear response
We present an approach to steady-state mesoscopic transport based on the
maximum entropy principle formulation of nonequilibrium statistical mechanics.
Our approach is not limited to the linear response regime. We show that this
approach yields the quantization observed in the integer quantum Hall effect at
large currents, which until now has been unexplained. We also predict new
behaviors of non-local resistances at large currents in the presence of dirty
contacts.Comment: 14 pages plus one figure (with an insert) (post-script codes
appended), RevTeX 3.0, UCF-CM-93-004 (Revised
Nonbackscattering Contribution to the Weak Localization
We show that the enhancement of backscattering responsible for the weak
localization is accompanied by reduction of the scattering in other directions.
A simple quasiclassical interpretation of this phenomenon is presented in terms
of a small change in the effective differential cross-section for a single
impurity. The reduction of the scattering at the arbitrary angles leads to the
decrease of the quantum correction to the conductivity. Within the diffusion
approximation this decrease is small, but it should be taken into account in
the case of a relatively strong magnetic field when the diffusion approximation
is not valid.Comment: 18 pages, 6 figures, Submitted to PR
Kondo effect in coupled quantum dots under magnetic fields
The Kondo effect in coupled quantum dots is investigated theoretically under
magnetic fields. We show that the magnetoconductance (MC) illustrates peak
structures of the Kondo resonant spectra. When the dot-dot tunneling coupling
is smaller than the dot-lead coupling (level broadening), the
Kondo resonant levels appear at the Fermi level (). The Zeeman splitting
of the levels weakens the Kondo effect, which results in a negative MC. When
is larger than , the Kondo resonances form bonding and
anti-bonding levels, located below and above , respectively. We observe a
positive MC since the Zeeman splitting increases the overlap between the levels
at . In the presence of the antiferromagnetic spin coupling between the
dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure
Time-dependent DMRG Study on Quantum Dot under a Finite Bias Voltage
Resonant tunneling through quantum dot under a finite bias voltage at zero
temperature is investigated by using the adaptive time-dependent density matrix
renormalization group(TdDMRG) method. Quantum dot is modeled by the Anderson
Hamiltonian with the 1-D nearest-neighbor tight-binding leads. Initially the
ground state wave function is calculated with the usual DMRG method. Then the
time evolution of the wave function due to the slowly changing bias voltage
between the two leads is calculated by using the TdDMRG technique. Even though
the system size is finite, the expectation values of current operator show
steady-like behavior for a finite time interval, in which the system is
expected to resemble the real nonequilibrium steady state of the infinitely
long system. We show that from the time intervals one can obtain quantitatively
correct results for differential conductance in a wide range of bias voltage.
Finally we observe an anomalous behavior in the expectation value of the double
occupation operator at the dot as a function of
bias voltage
Magnetotransport through a strongly interacting quantum dot
We study the effect of a magnetic field on the conductance through a strongly
interacting quantum dot by using the finite temperature extension of Wilson's
numerical renormalization group method to dynamical quantities. The quantum dot
has one active level for transport and is modelled by an Anderson impurity
attached to left and right electron reservoirs. Detailed predictions are made
for the linear conductance and the spin-resolved conductance as a function of
gate voltage, temperature and magnetic field strength. A strongly coupled
quantum dot in a magnetic field acts as a spin filter which can be tuned by
varying the gate voltage. The largest spin-filtering effect is found in the
range of gate voltages corresponding to the mixed valence regime of the
Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure
Kondo Effect in Single Quantum Dot Systems --- Study with Numerical Renormalization Group Method ---
The tunneling conductance is calculated as a function of the gate voltage in
wide temperature range for the single quantum dot systems with Coulomb
interaction. We assume that two orbitals are active for the tunneling process.
We show that the Kondo temperature for each orbital channel can be largely
different. The tunneling through the Kondo resonance almost fully develops in
the region T \lsim 0.1 T_{K}^{*} \sim 0.2 T_{K}^{*}, where is the
lowest Kondo temperature when the gate voltage is varied. At high temperatures
the conductance changes to the usual Coulomb oscillations type. In the
intermediate temperature region, the degree of the coherency of each orbital
channel is different, so strange behaviors of the conductance can appear. For
example, the conductance once increases and then decreases with temperature
decreasing when it is suppressed at T=0 by the interference cancellation
between different channels. The interaction effects in the quantum dot systems
lead the sensitivities of the conductance to the temperature and to the gate
voltage.Comment: 22 pages, 18 figures, LaTeX, to be published in J. Phys. Soc. Jpn.
Vol. 67 No. 7 (1998
- …