718 research outputs found

    Measurement of Indeterminacy in Packings of Perfectly Rigid Disks

    Full text link
    Static packings of perfectly rigid particles are investigated theoretically and numerically. The problem of finding the contact forces in such packings is formulated mathematically. Letting the values of the contact forces define a vector in a high-dimensional space enable us to show that the set of all possible contact forces is convex, facilitating its numerical exploration. It is also found that the boundary of the set is connected with the presence of sliding contacts, suggesting that a stable packing should not have more than 2M-3N sliding contacts in two dimensions, where M is the number of contacts and N is the number of particles. These results were used to analyze packings generated in different ways by either molecular dynamics or contact dynamics simulations. The dimension of the set of possible forces and the number of sliding contacts agrees with the theoretical expectations. The indeterminacy of each component of the contact forces are found, as well as the an estimate for the diameter of the set of possible contact forces. We also show that contacts with high indeterminacy are located on force chains. The question of whether the simulation methods can represent a packing's memory of its formation is addressed.Comment: 12 pages, 13 figures, submitted to Phys Rev

    Unstable particles in matter at a finite temperature: the rho and omega mesons

    Full text link
    Unstable particles (such as the vector mesons) have an important role to play in low mass dilepton production resulting from heavy ion collisions and this has been a subject of several investigations. Yet subtleties, such as the implications of the generalization of the Breit-Wigner formula for nonzero temperature and density, e.g. the question of collisional broadening, the role of Bose enhancement, etc., the possibility of the kinematic opening (or closing) of decay channels due to environmental effects, the problem of double counting through resonant and direct contributions, are often given insufficient emphasis. The present study attempts to point out these features using the rho and omega mesons as illustrative examples. The difference between the two versions of the Vector Meson Dominance Model in the present context is also presented. Effects of non-zero temperature and density, through vector meson masses and decay widths, on dilepton spectra are studied, for concreteness within the framework of a Walecka-type model, though most of the basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor

    Full text link
    We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi liquid superconductor. We obtain analytical results for the Ginzburg-Landau functional in the critical region around the superconducting phase transition, T <= T_c, in two special limits of the model, i.e., the spin-charge separation case and the anomalous Fermi liquid case. For both cases, in the presence of a mass renormalization factor, we derived the form and the specific dependence of the coherence length, penetration depth, specific heat jump at the critical point, and the magnetic upper critical field. For both limits the obtained results reduce to the usual BCS results for a two dimensional s-wave superconductor. We compare our results with recent and relevant theoretical work. The results for a d--wave symmetry order parameter do not change qualitatively the results presented in this paper. Only numerical factors appear additionally in our expressions.Comment: accepted for publication in Physical Review

    Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state

    Full text link
    We present new experimental data on directed flow in collisions of Au+Au, Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the centrality and system dependence of integral and differential directed flow for particles selected according to charge. All the features of the experimental data are compared with Isospin Quantum Molecular Dynamics (IQMD) model calculations in an attempt to extract information about the nuclear matter equation of state (EoS). We show that the combination of rapidity and transverse momentum analysis of directed flow allow to disentangle various parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent interactions is best suited to explain the experimental data in Au+Au and Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A MeV incident beam energy, none of the IQMD parametrizations studied here is able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys. Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub

    Dilepton Spectra from Decays of Light Unflavored Mesons

    Get PDF
    The invariant mass spectrum of the e+e−e^{+}e^{-} and μ+μ−\mu ^{+}\mu ^{-} pairs from decays of light unflavored mesons with masses below the ϕ(1020)\phi (1020)-meson mass to final states containing along with a dilepton pair one photon, one meson, and two mesons are calculated within the framework of the effective meson theory. The results can be used for simulations of the dilepton spectra in heavy-ion collisions and for experimental searches of dilepton meson decays.Comment: 73 pages, 19 figures, 3 tables, REVTeX, new references adde

    Structure, mass and stability of galactic disks

    Full text link
    In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures is available at http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd

    Mechanics: non-classical, non-quantum

    Full text link
    A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce quantum results over experimentally tested regimes while having a well defined classical limit, and hence are viable alternative theories. We illustrate an NCQ by considering an explicit class of NCQ mechanics. Here this class will be arrived at via a natural generalization of classical mechanics formulated in terms of a probability density functional

    Precision tests with a new class of dedicated ether-drift experiments

    Full text link
    In principle, by accepting the idea of a non-zero vacuum energy, the physical vacuum of present particle physics might represent a preferred reference frame. By treating this quantum vacuum as a relativistic medium, the non-zero energy-momentum flow expected in a moving frame should effectively behave as a small thermal gradient and could, in principle, induce a measurable anisotropy of the speed of light in a loosely bound system as a gas. We explore the phenomenological implications of this scenario by considering a new class of dedicated ether-drift experiments where arbitrary gaseous media fill the resonating optical cavities. Our predictions cover most experimental set up and should motivate precise experimental tests of these fundamental issues.Comment: Accepted for publication in Eur. Phys. Journ.
    • …
    corecore