16 research outputs found

    Association of mRNA Vaccination With Clinical and Virologic Features of COVID-19 Among US Essential and Frontline Workers

    Get PDF
    IMPORTANCE: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. OBJECTIVE: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. DESIGN, SETTING, AND PARTICIPANTS: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. EXPOSURES: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. MAIN OUTCOMES AND MEASURES: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. RESULTS: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/μL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/μL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). CONCLUSIONS AND RELEVANCE: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied

    Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection

    No full text
    BackgroundData on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited. MethodsFrom a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August, 2020 to March, 2021 for SARS-CoV-2 infection by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum- neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models. ResultsAmong 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose- 2. ConclusionsA single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS- CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product. Main Point SummaryOne dose of mRNA COVID-19 vaccine after previous SARS-CoV-2 infection produced the highest neutralizing antibody titers; among those without history of infection, two doses of mRNA vaccine produced the most robust response

    Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER): Protocol for a Multisite Longitudinal Cohort Study

    No full text
    BackgroundWorkers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. ObjectiveThe Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. MethodsThe RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19–like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)–confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR–confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. ResultsThe study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. ConclusionsData collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. International Registered Report Identifier (IRRID)DERR1-10.2196/3157

    Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT): Protocol for a Multisite Longitudinal Cohort Study.

    No full text
    Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children are essential to inform policy and guide health care professionals in advising parents and caregivers of children who test positive for SARS-CoV-2. This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years, as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. The PROTECT multisite network was initiated in July 2021, which aims to enroll approximately 2305 children across four US locations and collect data over a 2-year surveillance period. The enrollment target was based on prospective power calculations and accounts for expected attrition and nonresponse. Study sites recruit parents and legal guardians of age-eligible children participating in the existing Arizona Healthcare, Emergency Response, and Other Essential Workers Surveillance (HEROES)-Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and parents/legal guardians' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self-collected or collected by parents/legal guardians weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza, or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with permission of their parents/legal guardians, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical record (EMR) linkages where available, and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. Data collection began in July 2021 and is expected to continue through the spring of 2023. As of April 13, 2022, 2371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. RR1-10.2196/37929. ©Joy Burns, Patrick Rivers, Lindsay B LeClair, Krystal S Jovel, Ramona P Rai, Ashley A Lowe, Laura J Edwards, Sana M Khan, Clare Mathenge, Maria Ferraris, Jennifer L Kuntz, Julie Mayo Lamberte, Kurt T Hegmann, Marilyn J Odean, Hilary McLeland-Wieser, Shawn Beitel, Leah Odame-Bamfo, Natasha Schaefer Solle, Josephine Mak, Andrew L Phillips, Brian E Sokol, James Hollister, Jezahel S Ochoa, Lauren Grant, Matthew S Thiese, Keya B Jacoby, Karen Lutrick, Felipe A Pubillones, Young M Yoo, Danielle Rentz Hunt, Katherine Ellingson, Mark C Berry, Joe K Gerald, Joanna Lopez, Lynn B Gerald, Meredith G Wesley, Karl Krupp, Meghan K Herring, Purnima Madhivanan, Alberto J Caban-Martinez, Harmony L Tyner, Jennifer K Meece, Sarang K Yoon, Ashley L Fowlkes, Allison L Naleway, Lisa Gwynn, Jefferey L Burgess, Mark G Thompson, Lauren EW Olsho, Manjusha Gaglani. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 28.07.2022.</CopyrightInformation
    corecore