55 research outputs found
Development of a femtosecond time-resolved spectroscopic ellipsometry setup
The developement of a femtosecond-time-resolved spectroscopic ellipsometry setup based on a pump-probe technique is described. The characterization of the setup is presented as well as first results of experiments on a c-plane oriented ZnO thin film are shown. Indications for the study of fast charge-carrier dynamics are given.:Introduction 1
1 Theoretical framework 3
1.1 Zinc oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Crystal and band structure . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dielectric function and electronic transitions . . . . . . . . . . . . . . . . 5
1.2.1 Electronic transitions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Charge carrier dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 High excitation effects . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Charge carrier density-dependent dielectric function model . . . . 9
1.4 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Preliminary experiments 14
2.1 Methods and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Time-integrated micro-ellipsometry . . . . . . . . . . . . . . . . . 28
2.4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Conclusive experiments at ELI Beamlines 35
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Demonstration of functionality . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 51
4 Results and discussion 55
4.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Summary and outlook 6
Transient carrier and lattice dynamics in photo-excited semiconductors studied by femtosecond spectroscopic ellipsometry
This work investigates transient optical properties of semiconductors and the underlying carrier and lattice dynamics after intense pulsed optical excitation. To this aim, the ex- perimental technique of pump-probe spectroscopic ellipsometry and the corresponding experimental setup is introduced first. The pump-probe scheme yields sub-picosecond temporal resolution while the spectroscopic ellipsometry measurement allows direct ex- cess to the complex-valued optical response, that means real and imaginary part of the dielectric function. The functionality of the experimental setup as well as technical de- tails, capabilities and limitations are discussed. First measurements are demonstrated on the prototypical wide-bandgap semiconductor ZnO and the classical semiconductors Ge, Si and InP. Furthermore, the full dielectric function tensor of optically anisotropic materials can be obtained from ellipsometry measurements, if suitable orientations of the material are measured and collectively analyzed. This capability will be demonstrated for the uniaxial material ZnO. Upon optical excitation, the transient occupation of electronic states is varied which leads to a redistribution of the spectral weight of absorption. This embodies the com- bined intricate effects of inter- and intra-band transitions, carrier scattering with the heated lattice as well as many-body effects such as band-gap renormalization, carrier screening and Pauli blocking. The contributions of these effects are disentangled by means of line-shape analysis of the dielectric function. For ZnO, we additionally find a strong influence of the polar electron-phonon interaction on the dielectric function that are framed as hot-phonon effects in the literature. They exemplify the importance of the lattice in the relaxation process of photo-excited semiconductors. The experimental dielectric functions will be compared to theoretical results from first-principles calcu- lation taking excitonic effects and the photo-excited carriers at elevated temperatures into account. The transient carrier dynamics are additionally supported by simula- tions of the transient carrier and lattice temperature. Moreover, spatial information on the transient carrier dynamics was obtained from pump-probe imaging ellipsometry on ZnO under similar excitation conditions. Here, the photo-excitation enables a delicate interplay between diffusion and ballistic propagation of the carriers, that leads to a non- homogeneous lateral carrier profile. This spatial modulation of the carrier density and subsequently the optical properties challenges the standard assumption of homogeneous lateral excitation in the analysis of pump-probe experiments.:Introduction 1
1 Measurement of transient optical properties 5
1.1 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Optical properties and ellipsometry . . . . . . . . . . . . . . . . . . . . . 6
1.3 Transient optical properties and time-resolved ellipsometry . . . . . . . . 7
1.4 Broadband femtosecond spectroscopic ellipsometry . . . . . . . . . . . . 10
2 Transient charge-carrier and lattice dynamics in photo-excited semicon-
ductors 12
2.1 Four regimes of carrier relaxation . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Hot-phonon effects in photo-excited wide-bandgap semiconductors 16
2.2 Effects of high carrier density on optical properties . . . . . . . . . . . . 17
2.3 Transient dielectric functions of ZnO . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Ultrafast dynamics of hot charge carriers in an oxide semiconduc-
tor probed by femtosecond spectroscopic ellipsometry . . . . . . . 21
2.3.2 Transient birefringence and dichroism in ZnO studied with fs-time-
resolved spectroscopic ellipsometry . . . . . . . . . . . . . . . . . 22
2.3.3 Femtosecond-time-resolved imaging of the dielectric function of
ZnO in the visible to near-IR spectral range . . . . . . . . . . . . 23
2.4 Transient dielectric functions of Ge, Si and InP . . . . . . . . . . . . . . 24
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Summary and outlook 29
Bibliography 32
Cumulated Publications 52
Symbols and abbreviations 54
Danksagung 56
Zusammenfassung nach §11 (4) der Promotionsordnung 58In dieser Arbeit werden die transienten optischen Eigenschaften von Halbleitern nach gepulster optischer Anregung und die zugrundeliegende Prozesse der Ladungsträgerund Kristallgitterdynamik untersucht. Zu diesem Zwecke wird die experimentelle Methode der femtosekunden-zeitaufgelösten spektroskopische Ellipsometrie eingeführt. Das Pump-Probe-Messschema gewährt eine zeitliche Aufösung von weniger als einer Pikosekunde während es die spektroskopischen Ellipsometrie ermöglicht, direkten Zugang zur komplex-wertigen optischen Antwortfunktion auf eine eintreffende elektromagnetische Welle das heißt Real- und Imaginärteil der dielektrischen Funktion (DF) in einem breiten Spektralbereich zu erhalten. Zu Beginn wird der Messaufbau der zeitaufgelösten spektroskopischen Ellipsometrie vorgestellt. Seine Funktionalität wird durch Untersuchungen am prototypischen weitbandlückigen Halbleiter ZnO und den klassischen Halbleitern Ge, Si und InP demonstriert. Weiterhin können richtungsund polarisationsabhängige optischen Eigenschaften bestimmt werden, wenn entsprechende Orientierungen der Probe gemessen und simultan modelliert werden. Diese Fähigkeit wird ebenfalls an ZnO demonstriert, da es aufgrund seiner hexagonalen Kristallstruktur anisotrope optische Eigenschaften aufweist. Die intensive optische Anregung der Halbleiter bewirkt eine zeitweilige Umverteilung der Besetzung der elektronischen Zustände, welche sich in einer deutlich veränderten Linienform der DF widerspiegelt. Verantwortlich dafür sind unter anderem elektronische Interund Intra-Band-Übergänge und Streuprozesse mit dem aufgeheizten Gitter sowie verschiedene Vielteilcheneffekte wie Bandlückrenormierung, Abschirmung der Ladungsträger und das Pauli-Prinzip. Die Beiträge dieser Effekte können mittels geeigneter Linienformanalyse der DF näher untersucht werden. Am Beispiel von ZnO wird auch die starke Wechselwirkung der Elektronen mit dem aufgeheizten Gitter und deren Auswirkungen auf die DF gezeigt. Die experimentelle DF wird mit theoretischen Berechnungen verglichen, wobei bei exzitonische Effekte und die hohe Überschussenergie der Ladungsträger berücksichtigt werden. Zusätzlich erklären Simulationen der transienten Ladungsträgerund Gittertemperatur den Verlauf der Relaxation der Ladungsträger. Weiterhin werden Information über die räumliche Ausbreitung der Ladungsträger nach optischer Anregung mittels abbildender zeitaufgelöster Ellipsometrie an ZnO gewonnen. Hierbei wird ein komplexes Zwischenspiel zwischen Diffusion und ballistischer Propagation der Ladungsträger beobachtet, welches zu einer ringförmigen Verteilung der Ladungsträger führt.:Introduction 1
1 Measurement of transient optical properties 5
1.1 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Optical properties and ellipsometry . . . . . . . . . . . . . . . . . . . . . 6
1.3 Transient optical properties and time-resolved ellipsometry . . . . . . . . 7
1.4 Broadband femtosecond spectroscopic ellipsometry . . . . . . . . . . . . 10
2 Transient charge-carrier and lattice dynamics in photo-excited semicon-
ductors 12
2.1 Four regimes of carrier relaxation . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Hot-phonon effects in photo-excited wide-bandgap semiconductors 16
2.2 Effects of high carrier density on optical properties . . . . . . . . . . . . 17
2.3 Transient dielectric functions of ZnO . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Ultrafast dynamics of hot charge carriers in an oxide semiconduc-
tor probed by femtosecond spectroscopic ellipsometry . . . . . . . 21
2.3.2 Transient birefringence and dichroism in ZnO studied with fs-time-
resolved spectroscopic ellipsometry . . . . . . . . . . . . . . . . . 22
2.3.3 Femtosecond-time-resolved imaging of the dielectric function of
ZnO in the visible to near-IR spectral range . . . . . . . . . . . . 23
2.4 Transient dielectric functions of Ge, Si and InP . . . . . . . . . . . . . . 24
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Summary and outlook 29
Bibliography 32
Cumulated Publications 52
Symbols and abbreviations 54
Danksagung 56
Zusammenfassung nach §11 (4) der Promotionsordnung 5
Hot-phonon effects in photo-excited wide-bandgap semiconductors
Carrier and lattice relaxation after optical excitation is simulated for the prototypical
wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons,
holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are
distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as
expected for polar semiconductors and hot-phonon effects are observed for strong optical
excitation. Our results support the findings of recent time-resolved optical spectroscopy
experiments
A seed-like proteome in oil-rich tubers
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos
Development of a femtosecond time-resolved spectroscopic ellipsometry setup
The developement of a femtosecond-time-resolved spectroscopic ellipsometry setup based on a pump-probe technique is described. The characterization of the setup is presented as well as first results of experiments on a c-plane oriented ZnO thin film are shown. Indications for the study of fast charge-carrier dynamics are given.:Introduction 1
1 Theoretical framework 3
1.1 Zinc oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Crystal and band structure . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dielectric function and electronic transitions . . . . . . . . . . . . . . . . 5
1.2.1 Electronic transitions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Charge carrier dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 High excitation effects . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Charge carrier density-dependent dielectric function model . . . . 9
1.4 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Preliminary experiments 14
2.1 Methods and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Time-integrated micro-ellipsometry . . . . . . . . . . . . . . . . . 28
2.4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Conclusive experiments at ELI Beamlines 35
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Demonstration of functionality . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 51
4 Results and discussion 55
4.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Summary and outlook 6
Development of a femtosecond time-resolved spectroscopic ellipsometry setup
The developement of a femtosecond-time-resolved spectroscopic ellipsometry setup based on a pump-probe technique is described. The characterization of the setup is presented as well as first results of experiments on a c-plane oriented ZnO thin film are shown. Indications for the study of fast charge-carrier dynamics are given.:Introduction 1
1 Theoretical framework 3
1.1 Zinc oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Crystal and band structure . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dielectric function and electronic transitions . . . . . . . . . . . . . . . . 5
1.2.1 Electronic transitions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Charge carrier dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 High excitation effects . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Charge carrier density-dependent dielectric function model . . . . 9
1.4 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Preliminary experiments 14
2.1 Methods and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Time-integrated micro-ellipsometry . . . . . . . . . . . . . . . . . 28
2.4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Conclusive experiments at ELI Beamlines 35
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Demonstration of functionality . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 51
4 Results and discussion 55
4.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Summary and outlook 6
Hot-phonon effects in photo-excited wide-bandgap semiconductors
Carrier and lattice relaxation after optical excitation is simulated for the prototypical
wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons,
holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are
distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as
expected for polar semiconductors and hot-phonon effects are observed for strong optical
excitation. Our results support the findings of recent time-resolved optical spectroscopy
experiments
Hot-phonon effects in photo-excited wide-bandgap semiconductors
Carrier and lattice relaxation after optical excitation is simulated for the prototypical
wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons,
holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are
distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as
expected for polar semiconductors and hot-phonon effects are observed for strong optical
excitation. Our results support the findings of recent time-resolved optical spectroscopy
experiments
Broadband femtosecond spectroscopic ellipsometry
We present a setup for time-resolved spectroscopic ellipsometry in a pump–probe scheme using femtosecond laser pulses. As a probe, the system deploys supercontinuum white light pulses that are delayed with respect to single-wavelength pump pulses. A polarizer–sample–compensator–analyzer configuration allows ellipsometric measurements by scanning the compensator azimuthal angle. The transient ellipsometric parameters are obtained from a series of reflectance-difference spectra that are measured for various pump–probe delays and polarization (compensator) settings. The setup is capable of performing time-resolved spectroscopic ellipsometry from the near-infrared through the visible to the near-ultraviolet spectral range at 1.3 eV–3.6 eV. The temporal resolution is on the order of 100 fs within a delay range of more than 5 ns. We analyze and discuss critical aspects such as fluctuations of the probe pulses and imperfections of the polarization optics and present strategies deployed for circumventing related issues. Funding: project "Advanced research using high intensity laser produced photons and particles" (ADONIS) from the European Regional Development Fund [CZ.02.1.01/0.0/0.0/16_019/0000789]; project "Structural dynamics of biomolecular systems" (ELIBIO) from the Europea</p
2-ÎĽm central wavelength ultrafast fiber CPA with compact design
We report on our recent progress in creating a new type of compact laser that uses thulium-based fiber CPA technology to emit a central wavelength of 2 ÎĽm. This laser can produce pulse energies of >100 ÎĽJ and an average power of >15 W. It is designed to be long-lasting and is built for industrial use, making it a great fit for integration into laser machines used for materials processing. These laser parameters are ideal for working with semiconductors like silicon, allowing for tasks such as micro-welding, cutting of filaments, dicing, bonding and more
- …