5,254 research outputs found

    Molar volume of solid isotopic helium mixtures

    Full text link
    Solid isotopic helium mixtures have been studied by path-integral Monte Carlo simulations in the isothermal-isobaric ensemble. This method allowed us to study the molar volume as a function of temperature, pressure, and isotopic composition. At 25 K and 0.2 GPa, the relative difference between molar volumes of isotopically-pure crystals of 3He and 4He is found to be about 3%. This difference decreases under pressure, and for 12 GPa it is smaller than 1%. For isotopically-mixed crystals, a linear relation between lattice parameters and concentrations of helium isotopes is found, in agreement with Vegard's law. The virtual crystal approximation, valid for isotopic mixtures of heavier atoms, does not give reliable results for solid solutions of helium isotopes.Comment: 7 pages, 5 figure

    Rare-gas solids under pressure: A path-integral Monte Carlo simulation

    Full text link
    Rare-gas solids (Ne, Ar, Kr, and Xe) under hydrostatic pressure up to 30 kbar have been studied by path-integral Monte Carlo simulations in the isothermal-isobaric ensemble. Results of these simulations have been compared with available experimental data and with those obtained from a quasiharmonic approximation (QHA). This comparison allows us to quantify the overall anharmonicity of the lattice vibrations and its influence on several structural and thermodynamic properties of rare-gas solids. The vibrational energy increases with pressure, but this increase is slower than that of the elastic energy, which dominates at high pressures. In the PIMC simulations, the vibrational kinetic energy is found to be larger than the corresponding potential energy, and the relative difference between both energies decreases as the applied pressure is raised. The accuracy of the QHA increases for rising pressure.Comment: 9 pages, 6 figure

    Solid helium at high pressure: A path-integral Monte Carlo simulation

    Full text link
    Solid helium (3He and 4He) in the hcp and fcc phases has been studied by path-integral Monte Carlo. Simulations were carried out in the isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one to study the temperature and pressure dependences of isotopic effects on the crystal volume and vibrational energy in a wide parameter range. The obtained equation of state at room temperature agrees with available experimental data. The kinetic energy, E_k, of solid helium is found to be larger than the vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at low pressures, and decreases as the applied pressure is raised, converging to 1, as in a harmonic solid. Results of these simulations have been compared with those yielded by previous path integral simulations in the NVT ensemble. The validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure

    Adaptive optics near-IR imaging of NGC2992 - unveiling core structures related to radio figure-8 loops

    Full text link
    We present near-IR adaptive optics, VLA radio and HST optical imaging of the nearby Seyfert galaxy NGC2992. Spiral structure and an extension to the West are traced down to the core region at the limiting resolution of our near-IR images. A faint, diffuse loop of near-IR and radio emission is also observed to the north, embedded within the prominent 2 arcsec radio loop previously observed to the northwest. Near-IR color maps, and CO narrowband imaging, are then used to identify which regions may not be purely reddened stellar populations. Our new data provide evidence that the VLA radio-loop morphology in the shape of a figure-8 represents two components superimposed: 1) outflow bubbles out of the plane of the disk, coincident with the extended emission line region (EELR); 2) star formation along the spiral arm within the galaxy disk and through the dust lane. The near-IR continuum emission associated with the outflowing radio bubbles suggest that the radio loops are driven by the active nucleus.Comment: 10 pages, 9 figures, accepted in MNRA

    A multi-wavelength view of the central kiloparsec region in the Luminous Infrared Galaxy NGC1614

    Full text link
    The Luminous Infrared Galaxy NGC1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ~100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Pa-alpha, optical, and X-ray observations of NGC1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array (VLA) and the Gemini/T-ReCS 8.7 micron emission, as well as the Pa-alpha line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used an HST/NICMOS Pa-alpha map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power-law for each individual region within the central kpc of NGC1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an AGN, but rather by a compact (r < 90 pc) starburst. Chandra X-ray data also show that the central kpc region is dominated by starburst activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the starburst ring and a putative AGN in NGC1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.Comment: 13 pages, 7 figures, 5 tables. Accepted for publication in Ap

    A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans

    Get PDF
    Background: The choice of any radiotherapy treatment plan is usually made after the evaluation of a few preliminary isodose distributions obtained from different beam configurations. Despite considerable advances in planning techniques, such final decision remains a challenging task that would greatly benefit from efficient and reliable assessment tools. Methods: For any dosimetric plan considered, data on dose-volume histograms supplied by treatment planning systems are used to provide estimates on planning target coverage as well as on sparing of organs at risk and the remaining healthy tissue. These partial metrics are then combined into a dose distribution index (DDI), which provides a unified, easy-to-read score for each competing radiotherapy plan. To assess the performance of the proposed scoring system, DDI figures for fifty brain cancer patients were retrospectively evaluated. Patients were divided in three groups depending on tumor location and malignancy. For each patient, three tentative plans were designed and recorded during planning, one of which was eventually selected for treatment. We thus were able to compare the plans with better DDI scores and those actually delivered. Results: When planning target coverage and organs at risk sparing are considered as equally important, the tentative plan with the highest DDI score is shown to coincide with that actually delivered in 32 of the 50 patients considered. In 15 (respectively 3) of the remaining 18 cases, the plan with highest DDI value still coincides with that actually selected, provided that organs at risk sparing is given higher priority (respectively, lower priority) than target coverage. Conclusions: DDI provides a straightforward and non-subjective tool for dosimetric comparison of tentative radiotherapy plans. In particular, DDI readily quantifies differences among competing plans with similar-looking dose-volume histograms and can be easily implemented for any tumor type and localization, irrespective of the planning system and irradiation technique considered. Moreover, DDI permits to estimate the dosimetry impact of different priorities being assigned to sparing of organs at risk or to better target coverag

    Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field

    Full text link
    We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting four-fold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.Comment: 7 pages, 4 figure

    Electronic excitation spectrum of metallic carbon nanotubes

    Full text link
    We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation energies. The measured nanotube spectra are in excellent agreement with theoretical predictions based on the nanotube band structure. Our results permit the complete identification of the electron quantum states in nanotube quantum dots.Comment: 4 pages, 3 figure

    Collider phenomenology of vector resonances in WZ scattering processes

    Full text link
    We study the production of vector resonances at the LHC via WZWZ scattering processes and explore the sensitivities to these resonances for the expected future LHC luminosities. The electroweak chiral Lagrangian and the Inverse Amplitude Method (IAM) are used for analyzing a dynamically generated vector resonance, whose origin would be the (hypothetically strong) self interactions of the longitudinal gauge bosons, WLW_L and ZLZ_L. We implement the unitarized scattering amplitudes into a single model, the IAM-MC, that has been adapted to MadGraph~5. It is written in terms of the electroweak chiral Lagrangian and an additional effective Proca Lagrangian for the vector resonances, so that it reproduces the resonant behavior of the IAM and allows us to perform a realistic study of signal versus background at the LHC. We focus on the ppWZjjpp\to WZjj channel, discussing first on the potential of the hadronic and semileptonic channels of the final WZWZ, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with l1+l1l2+νjjl^+_1l^-_1l^+_2\nu jj, l=e,μl=e,\mu, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.51.5-2.5TeV2.5\,{\rm TeV}, which we have explored.Comment: 8 pages, 5 figures, contributed to the XIII Quark Confinement and the Hadron Spectrum - Confinement2018, 31 July - 6 August 2018, Maynooth University, Irelan
    corecore