4,963 research outputs found

    Molar volume of solid isotopic helium mixtures

    Full text link
    Solid isotopic helium mixtures have been studied by path-integral Monte Carlo simulations in the isothermal-isobaric ensemble. This method allowed us to study the molar volume as a function of temperature, pressure, and isotopic composition. At 25 K and 0.2 GPa, the relative difference between molar volumes of isotopically-pure crystals of 3He and 4He is found to be about 3%. This difference decreases under pressure, and for 12 GPa it is smaller than 1%. For isotopically-mixed crystals, a linear relation between lattice parameters and concentrations of helium isotopes is found, in agreement with Vegard's law. The virtual crystal approximation, valid for isotopic mixtures of heavier atoms, does not give reliable results for solid solutions of helium isotopes.Comment: 7 pages, 5 figure

    Kinetic energy of protons in ice Ih and water: a path integral study

    Full text link
    The kinetic energy of H and O nuclei has been studied by path integral molecular dynamics simulations of ice Ih and water at ambient pressure. The simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. Ice Ih was studied in a temperature range between 210-290 K, and water between 230-320 K. Simulations of an isolated water molecule were performed in the range 210-320 K to estimate the contribution of the intramolecular vibrational modes to the kinetic energy. Our results for the proton kinetic energy, K_H, in water and ice Ih show both agreement and discrepancies with different published data based on deep inelastic neutron scattering experiments. Agreement is found for water at the experimental melting point and in the range 290-300 K. Discrepancies arise because data derived from the scattering experiments predict in water two maxima of K_H around 270 K and 277 K, and that K_H is lower in ice than in water at 269 K. As a check of the validity of the employed water potential, we show that our simulations are consistent with other experimental thermodynamic properties related to K_H, as the temperature dependence of the liquid density, the heat capacity of water and ice at constant pressure, and the isotopic shift in the melting temperature of ice upon isotopic substitution of either H or O atoms. Moreover, the temperature dependence of K_H predicted by the q-TIP4P/F model for ice Ih is found to be in good agreement to results of path integral simulations using ab initio density functional theory.Comment: 11 pages, 6 figures, 2 table

    Quantum atomic delocalization vs. structural disorder in amorphous silicon

    Full text link
    Quantum effects on the atom delocalization in amorphous silicon have been studied by path-integral Monte Carlo simulations from 30 to 800 K. The quantum delocalization is appreciable vs. topological disorder, as seen from structural observables such as the radial distribution function (RDF). At low temperatures, the width of the first peak in the RDF increases by a factor of 1.5 due to quantum effects. The overall anharmonicity of the solid vibrations at finite temperatures in amorphous silicon is clearly larger than in the crystalline material. Low-energy vibrational modes are mainly located on coordination defects in the amorphous material.Comment: 5 pages, 5 PS figures, REVTE

    Isotope effects on the lattice parameter of cubic SiC

    Full text link
    Path-integral molecular dynamics simulations in the isothermal-isobaric (NPT) ensemble have been carried out to study the dependence of the lattice parameter of 3C-SiC upon isotope mass. This computational method allows a quantitative and nonperturbative study of such anharmonic effect. Atomic nuclei were treated as quantum particles interacting via a tight-binding-type potential. At 300 K, the difference Delta a between lattice parameters of 3C-SiC crystals with 12C and 13C amounts to 2.1 x 10^{-4} A. The effect due to Si isotopes is smaller, and amounts to 3.5 x 10^{-5} A when replacing 28Si by 29Si. Results of the PIMD simulations are interpreted in terms of a quasiharmonic approximation for the lattice vibrations.Comment: 4 pages, 3 figure

    Asymmetrical flow field-flow fractionation hyphenated to Orbitrap high resolution mass spectrometry for the determination of (functionalised) aqueous fullerene aggregates

    Get PDF
    AbstractIn this short communication we report on the technical implementations of coupling an asymmetric flow field-flow fractionation (AF4) instrument to a high resolution mass spectrometer (Orbitrap) using an atmospheric photoionisation interface. This will allow for the first time online identification of different fullerenes in aqueous samples after their aggregates have been fractionated in the FFF channel. Quality parameters such as limits of detection (LODs), limits of quantification (LOQs) or linear range were evaluated and they were in the range of hundreds ng/L for LODs and LOQs and the detector response was linear in the range tested (up to ∼20μg/L). The low detection and quantification limits make this technique useful for future environmental or ecotoxicology studies in which low concentration levels are expected for fullerenes and common on-line detectors such as UV or MALS do not have enough sensitivity and selectivity

    Path-integral molecular dynamics simulation of 3C-SiC

    Full text link
    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that non-linear quantum effects related to the atomic masses are particularly relevant at temperatures below 250 K.Comment: 14 pages, 15 figure

    A Method of Mass Measurement in Black Hole Binaries Using Timing and High Resolution X-ray Spectroscopy

    Get PDF
    In X-ray binaries, several percent of the compact object luminosity is intercepted by the surface of the normal companion and re-radiated through Compton reflection and the K-fluorescence. This reflected emission follows the variability of the compact object with a delay approximately equal to the orbital radius divided by the speed of light. This provides the possibility of measuring the orbital radius and thus substantially refining the compact object mass determination compared to using optical data alone. We demonstrate that it may be feasible to measure the time delay between the direct and reflected emission using cross-correlation of the light curves observed near the Kalpha line and above the K-edge of neutral iron. In the case of Cyg X-1, the time delay measurement is feasible with a 300--1000 ksec observation by a telescope with a 1000 cm^2 effective area near 6.4 keV and with a ~5eV energy resolution. With longer exposures, it may be possible to obtain mass constraints even if an X-ray source in the binary system lacks an optical counterpart.Comment: ApJ Letters, in press. 4 pages, 3 figures, uses emulateapj.st
    • …
    corecore