7 research outputs found

    Environmental assessment of energy efficiency improvements in historic buildings: solid wall insulation.

    Get PDF
    Since the elaboration of the Leipzig Charter on Sustainable European Cities in 2007, energy retrofit has become one of the priorities for the European Union. However, to achieve a sustainable development of the built environment, we need to not only address the energy consumption in the operational phase but also the environmental aspects associated with the production of the materials applied in the energy retrofit measures. In this case the sustainability is evaluated by comparing the embodied impacts generated during the entire life cycle of the materials with the energy use reduction achieved due to the thermal performance improvement

    Overheating Risks and Adaptation Strategies of Energy Retrofitted Historic Buildings under the Impact of Climate Change: Case Studies in Alpine Region

    Get PDF
    Energy retrofits can enhance the liveability and efficiency of historic buildings while preserving their historic and aesthetic values. However, measures like improved insulation and airtightness may increase their vulnerability to overheating and climate change may further worsen their performance in the future. This paper investigates indoor overheating risks brought by climate change in retrofitted historic buildings and proposes effective adaptation strategies. Firstly, local weather conditions are analysed to identify homogenous climatic zones. For each climatic zone, "a business-as-usual" emissions scenario is adopted, and most representative regional climate models are selected to obtain hourly output of future climate projection. A comparative study is adopted where typical alpine residential buildings, "Portici house", are simulated with regard to future energy use and indoor thermal state using the dynamic model in EnergyPlus. Energy use and indoor thermal conditions are compared before and after energy retrofit, as well as under present and future climate conditions. The results demonstrate that retrofit interventions could significantly improve energy efficiency of historic buildings in both present and future scenarios. A change in climate together with retrofit interventions will, however, result in higher risk of indoor overheating in South Tyrol. Potential negative side effects of energy retrofit could be controlled by adopting adequate shading and ventilation approaches that minimise, or eliminate, the risk of overheating during high temperature periods while optimising historic buildings' energy performance

    How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls

    Get PDF
    Buildings of heritage significance due to their historical, architectural, or cultural value, here called historic buildings, constitute a large proportion of the building stock in many countries around the world. Improving the performance of such buildings is necessary to lower the carbon emissions of the stock, which generates around 40% of the overall emissions worldwide. In historic buildings, it is estimated that heat loss through external walls contributes significantly to the overall energy consumption, and is associated with poor thermal comfort and indoor air quality. Measures to improve the performance of walls of historic buildings require a balance between energy performance, indoor environmental quality, heritage significance, and technical compatibility. Appropriate wall measures are available, but the correct selection and implementation require an integrated process throughout assessment (planning), design, construction, and use. Despite the available knowledge, decision-makers often have limited access to robust information on tested retrofit measures, hindering the implementation of deep renovation. This paper provides an evidence-based approach on the steps required during assessment, design, and construction, and after retrofitting through a literature review. Moreover, it provides a review of possible measures for wall retrofit within the deep renovation of historic buildings, including their advantages and disadvantages and the required considerations based on context

    Conservation-compatible retrofit solutions in historic buildings: An integrated approach

    Get PDF
    Historic, listed, or unlisted, buildings account for 30% of the European building stock. Since they are complex systems of cultural, architectural, and identity value, they need particular attention to ensure that they are preserved, used, and managed over time in a sustainable way. This implies a demand for retrofit solutions able to improve indoor thermal conditions while reducing the use of energy sources and preserving the heritage significance. Often, however, the choice and implementation of retrofit solutions in historic buildings is limited by socio-technical barriers (regulations, lack of knowledge on the hygrothermal behaviour of built heritage, economic viability, etc.). This paper presents the approach devised in the IEA-SHC Task 59 project (Renovating Historic Buildings Towards Zero Energy) to support decision makers in selecting retrofit solutions, in accordance with the provision of the EN 16883:2017 standard. In particular, the method followed by the project partners to gather and assess compatible solutions for historic buildings retrofitting is presented. It focuses on best practices for walls, windows, HVAC systems, and solar technologies. This work demonstrates that well-balanced retrofit solutions can exist and can be evaluated case-by-case through detailed assessment criteria. As a main result, the paper encourages decision makers to opt for tailored energy retrofit to solve the conflict between conservation and energy performance requirements

    What are the implications of climate change for retrofitted historic buildings? A literature review

    Get PDF
    Historic buildings account for more than one-quarter of Europe's existing building stock and are going to be crucial in the achievement of future energy targets. Although a drastic reduction in carbon emissions would slow climate change, an alteration in the climate is already certain. Therefore, the impact of climate change on retrofitted historic buildings should be considered in terms of occupants' comfort, heritage conservation, and energy performance. Inappropriate interventions might weaken the potential of traditional climate adaptive solutions, such as thermal mass and night cooling, leading to higher risks of overheating in a warming climate. Similarly, retrofit solutions will change the moisture dynamics of historic envelopes, which might lead to moisture damages when combined with more extreme precipitation events. This paper reviews recent literature that provides evidence of climate change's impact on retrofitted buildings, reveals potential future risks, and thereby sheds light on new factors influencing the decision-making process in the retrofit of historic buildings

    How can scientific literature support decision-making in the renovation of historic buildings? An evidence-based approach for improving the performance of walls

    Get PDF
    Buildings of heritage significance due to their historical, architectural, or cultural value, here called historic buildings, constitute a large proportion of the building stock in many countries around the world. Improving the performance of such buildings is necessary to lower the carbon emissions of the stock, which generates around 40% of the overall emissions worldwide. In historic buildings, it is estimated that heat loss through external walls contributes significantly to the overall energy consumption, and is associated with poor thermal comfort and indoor air quality. Measures to improve the performance of walls of historic buildings require a balance between energy performance, indoor environmental quality, heritage significance, and technical compatibility. Appropriate wall measures are available, but the correct selection and implementation require an integrated process throughout assessment (planning), design, construction, and use. Despite the available knowledge, decision-makers often have limited access to robust information on tested retrofit measures, hindering the implementation of deep renovation. This paper provides an evidence-based approach on the steps required during assessment, design, and construction, and after retrofitting through a literature review. Moreover, it provides a review of possible measures for wall retrofit within the deep renovation of historic buildings, including their advantages and disadvantages and the required considerations based on context

    Deep renovation of historic buildings: The IEA-SHC Task 59 path towards the lowest possible energy demand and CO2 emissions

    No full text
    Purpose Improving the energy performance of historic buildings has the potential to reduce carbon emissions while protecting built heritage through its continued use. However, implementing energy retrofits in these buildings faces social, economic, and technical barriers. The purpose of this conceptual paper is to present the approach of IEA-SHC Task 59 to address some of these barriers. Design/methodology/approach Task 59 aims to achieve the lowest possible energy demand for historic buildings. This paper proposes a definition for this concept and identifies three key socio-technical barriers to achieving this goal: the decision-makers’ lack of engagement in the renovation of historic buildings, a lack of support during the design process and limited access to proven retrofit solutions. Two methods – dissemination of best-practice and guidelines – are discussed in this paper as critical approaches for addressing the first two barriers. Findings An assessment of existing databases indicates a lack of best-practice examples focused specifically on historic buildings and the need for tailored information describing these case studies. Similarly, an initial evaluation of guidelines highlighted the need for process-oriented guidance and its evaluation in practice. Originality/value This paper provides a novel definition of lowest possible energy demand for historic buildings that is broadly applicable in both practice and research. Both best-practices and guidelines are intended to be widely disseminated throughout the field
    corecore