12,729 research outputs found

    Emergence and persistence of communities in coevolutionary networks

    Full text link
    We investigate the emergence and persistence of communities through a recently proposed mechanism of adaptive rewiring in coevolutionary networks. We characterize the topological structures arising in a coevolutionary network subject to an adaptive rewiring process and a node dynamics given by a simple voterlike rule. We find that, for some values of the parameters describing the adaptive rewiring process, a community structure emerges on a connected network. We show that the emergence of communities is associated to a decrease in the number of active links in the system, i.e. links that connect two nodes in different states. The lifetime of the community structure state scales exponentially with the size of the system. Additionally, we find that a small noise in the node dynamics can sustain a diversity of states and a community structure in time in a finite size system. Thus, large system size and/or local noise can explain the persistence of communities and diversity in many real systems.Comment: 6 pages, 5 figures, Accepted in EPL (2014

    Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime

    Full text link
    We analyse the concept of active gravitational mass for Reissner-Nordstrom spacetime in terms of scalar polynomial invariants and the Karlhede classification. We show that while the Kretschmann scalar does not produce the expected expression for the active gravitational mass, both scalar polynomial invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio

    Charged Dual String Vacua from Interacting Rotating Black Holes Via Discrete and Nonlinear Symmetries

    Full text link
    Using the stationary formulation of the toroidally compactified heterotic string theory in terms of a pair of matrix Ernst potentials we consider the four-dimensional truncation of this theory with no U(1) vector fields excited. Imposing one time-like Killing vector permits us to express the stationary effective action as a model in which gravity is coupled to a matrix Ernst potential which, under certain parametrization, allows us to interpret the matter sector of this theory as a double Ernst system. We generate a web of string vacua which are related to each other via a set of discrete symmetries of the effective action (some of them involve S-duality transformations and possess non-perturbative character). Some physical implications of these discrete symmetries are analyzed and we find that, in some particular cases, they relate rotating black holes coupled to a dilaton with no Kalb--Ramond field, static black holes with non-trivial dilaton and antisymmetric tensor fields, and rotating and static naked singularities. Further, by applying a nonlinear symmetry, namely, the so-called normalized Harrison transformation, on the seed field configurations corresponding to these neutral backgrounds, we recover the U(1)^n Abelian vector sector of the four-dimensional action of the heterotic string, charging in this way the double Ernst system which corresponds to each one of the neutral string vacua, i.e., the stationary and the static black holes and the naked singularities.Comment: 19 pages in latex, added referenc

    A new algorithm for anisotropic solutions

    Full text link
    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.Comment: 16 pages, to appear in Pramana - J. Phy

    Localizing gravity on thick branes: a solution for massive KK modes of the Schroedinger equation

    Full text link
    We generate scalar thick brane configurations in a 5D Riemannian space time which describes gravity coupled to a self-interacting scalar field. We also show that 4D gravity can be localized on a thick brane which does not necessarily respect Z_2-symmetry, generalizing several previous models based on the Randall-Sundrum system and avoiding the restriction to orbifold geometries as well as the introduction of the branes in the action by hand. We begin by obtaining a smooth brane configuration that preserves 4D Poincar'e invariance and violates reflection symmetry along the fifth dimension. The extra dimension can have either compact or extended topology, depending on the values of the parameters of the solution. In the non-compact case, our field configuration represents a thick brane with positive energy density centered at y=c_2, whereas in the compact case we get pairs of thick branes. We recast as well the wave equations of the transverse traceless modes of the linear fluctuations of the classical solution into a Schroedinger's equation form with a volcano potential of finite bottom. We solve Schroedinger equation for the massless zero mode m^2=0 and obtain a single bound wave function which represents a stable 4D graviton and is free of tachyonic modes with m^2<0. We also get a continuum spectrum of Kaluza-Klein (KK) states with m^2>0 that are suppressed at y=c_2 and turn asymptotically into plane waves. We found a particular case in which the Schroedinger equation can be solved for all m^2>0, giving us the opportunity of studying analytically the massive modes of the spectrum of KK excitations, a rare fact when considering thick brane configurations.Comment: 8 pages in latex. We corrected signs in the field equations, the expressions for the scalar field and the self-interacting potential. Due to the fact that no changes are introduced in the warp factor, the physics of the system remains the sam

    Relativistic Compact Objects in Isotropic Coordinates

    Full text link
    We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic type fluid with an equation of state p=ÎłÏp=\gamma \rho is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of Physic

    G\"odel-type universes in f(T) gravity

    Full text link
    The issue of causality in f(T)f(T) gravity is investigated by examining the possibility of existence of the closed timelike curves in the G\"{o}del-type metric. By assuming a perfect fluid as the matter source, we find that the fluid must have an equation of state parameter greater than minus one in order to allow the G\"{o}del solutions to exist, and furthermore the critical radius rcr_c, beyond which the causality is broken down, is finite and it depends on both matter and gravity. Remarkably, for certain f(T)f(T) models, the perfect fluid that allows the G\"{o}del-type solutions can even be normal matter, such as pressureless matter or radiation. However, if the matter source is a special scalar field rather than a perfect fluid, then rc→∞r_c\rightarrow\infty and the causality violation is thus avoided.Comment: 18 pages, introduction revised, reference adde

    Anisotropic static solutions in modelling highly compact bodies

    Full text link
    Einstein field equations for anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case Ό∝r−2\mu\propto r^{-2} for the energy density which arises in many astrophysical applications. In the second class the singularity at the center of the star is not present in the energy density. The models presented in this paper allow for increasing and decreasing profiles in the behavior of the energy density.Comment: 9 pages, to appear in Pramana - J. Phy
    • 

    corecore