17,657 research outputs found

    Non-spherical sources of static gravitational fields: investigating the boundaries of the no-hair theorem

    Full text link
    A new, globally regular model describing a static, non spherical gravitating object in General Relativity is presented. The model is composed by a vacuum Weyl--Levi-Civita special field - the so called gamma metric - generated by a regular static distribution of mass-energy. Standard requirements of physical reasonableness such as, energy, matching and regularity conditions are satisfied. The model is used as a toy in investigating various issues related to the directional behavior of naked singularities in static spacetimes and the blackhole (Schwarschild) limit.Comment: 10 pages, 2 figure

    Dynamics of Viscous Dissipative Plane Symmetric Gravitational Collapse

    Full text link
    We present dynamical description of gravitational collapse in view of Misner and Sharp's formalism. Matter under consideration is a complicated fluid consistent with plane symmetry which we assume to undergo dissipation in the form of heat flow, radiation, shear and bulk viscosity. Junction conditions are studied for a general spacetime in the interior and Vaidya spacetime in the exterior regions. Dynamical equations are obtained and coupled with causal transport equations derived in context of Mu¨\ddot{u}ller Israel Stewart theory. The role of dissipative quantities over collapse is investigated.Comment: 17 pages, accepted for publication in Gen. Relativ. Gra

    A source of a quasi--spherical space--time: The case for the M--Q solution

    Full text link
    We present a physically reasonable source for an static, axially--symmetric solution to the Einstein equations. Arguments are provided, supporting our belief that the exterior space--time produced by such source, describing a quadrupole correction to the Schwarzschild metric, is particularly suitable (among known solutions of the Weyl family) for discussing the properties of quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR

    Mixed potentials in radiative stellar collapse

    Full text link
    We study the behaviour of a radiating star when the interior expanding, shearing fluid particles are traveling in geodesic motion. We demonstrate that it is possible to obtain new classes of exact solutions in terms of elementary functions without assuming a separable form for the gravitational potentials or initially fixing the temporal evolution of the model unlike earlier treatments. A systematic approach enables us to write the junction condition as a Riccati equation which under particular conditions may be transformed into a separable equation. New classes of solutions are generated which allow for mixed spatial and temporal dependence in the metric functions. We regain particular models found previously from our general classes of solutions.Comment: 10 pages, To appear in J. Math. Phy

    Dissipative fluids out of hydrostatic equilibrium

    Get PDF
    In the context of the M\"{u}ller-Israel-Stewart second order phenomenological theory for dissipative fluids, we analyze the effects of thermal conduction and viscosity in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of relaxation times. Stability and causality conditions are contrasted with conditions for which the ''effective inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required) Submitted to Classical and Quantum Gravit

    Charged Cylindrical Collapse of Anisotropic Fluid

    Full text link
    Following the scheme developed by Misner and Sharp, we discuss the dynamics of gravitational collapse. For this purpose, an interior cylindrically symmetric spacetime is matched to an exterior charged static cylindrically symmetric spacetime using the Darmois matching conditions. Dynamical equations are obtained with matter dissipating in the form of shear viscosity. The effect of charge and dissipative quantities over the cylindrical collapse are studied. Finally, we show that homogeneity in energy density and conformal flatness of spacetime are necessary and sufficient for each other.Comment: 19 pages, accepted for publication in Gen. Relativ. Gra

    Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse

    Full text link
    Dark energy models based on f(R) theory have been extensively studied in literature to realize the late time acceleration. In this paper, we have chosen a viable f(R) model and discussed its effects on the dynamical instability of expansionfree fluid evolution generating a central vacuum cavity. For this purpose, contracted Bianchi identities are obtained for both the usual matter as well as dark source. The term dark source is named to the higher order curvature corrections arising from f(R) gravity. The perturbation scheme is applied and different terms belonging to Newtonian and post Newtonian regimes are identified. It is found that instability range of expansionfree fluid on external boundary as well as on internal vacuum cavity is independent of adiabatic index Γ\Gamma but depends upon the density profile, pressure anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with arXiv:1108.266

    Radiating Shear-Free Gravitational Collapse with Charge

    Full text link
    We present a new shear free model for the gravitational collapse of a spherically symmetric charged body. We propose a dissipative contraction with radiation emitted outwards. The Einstein field equations, using the junction conditions and an ansatz, are integrated numerically. A check of the energy conditions is also performed. We obtain that the charge delays the black hole formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included several references. Accepted for publication in GR

    Expansionfree Fluid Evolution and Skripkin Model in f(R) Theory

    Full text link
    We consider the modified f(R)f(R) theory of gravity whose higher order curvature terms are interpreted as a gravitational fluid or dark source. The gravitational collapse of a spherically symmetric star, made up of locally anisotropic viscous fluid, is studied under the general influence of the curvature fluid. Dynamical equations and junction conditions are modified in the context of f(R) dark energy and by taking into account the expansionfree evolution of the self-gravitating fluid. As a particular example, the Skripkin model is investigated which corresponds to isotropic pressure with constant energy density. The results are compared with corresponding results in General Relativity.Comment: 18 pages, accepted for publication Int. J. Mod. Phys.

    Geodesics in a quasispherical spacetime: A case of gravitational repulsion

    Full text link
    Geodesics are studied in one of the Weyl metrics, referred to as the M--Q solution. First, arguments are provided, supporting our belief that this space--time is the more suitable (among the known solutions of the Weyl family) for discussing the properties of strong quasi--spherical gravitational fields. Then, the behaviour of geodesics is compared with the spherically symmetric situation, bringing out the sensitivity of the trajectories to deviations from spherical symmetry. Particular attention deserves the change of sign in proper radial acceleration of test particles moving radially along symmetry axis, close to the r=2Mr=2M surface, and related to the quadrupole moment of the source.Comment: 30 pages late
    • …
    corecore