113 research outputs found
Static capacitive pressure sensing using a single graphene drum
To realize nanomechanical graphene-based pressure and gas sensors, it is
beneficial to have a method to electrically readout the static displacement of
a suspended graphene membrane. Capacitive readout, typical in
micro-electro-mechanical systems (MEMS), gets increasingly challenging as one
starts shrinking the dimensions of these devices, since the expected
responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of
detecting small capacitance changes, we design an electrical readout device
fabricated on top of an insulating quartz substrate, maximizing the
contribution of the suspended membrane to the total capacitance of the device.
The capacitance of the drum is further increased by reducing the gap size to
110 nm. Using external pressure load, we demonstrate successful detection of
capacitance changes of a single graphene drum down to 50 aF, and pressure
differences down to 25 mbar
In Situ Deformation and Breakage of Silica Particles Inside a SEM
AbstractMechanical properties and particle breakage behavior in the submicron size range are of fundamental importance for many particle related processes and applications. Although many (in situ) studies have been dedicated to materials’ size dependent mechanical characterization, particles as free standing structures have been omitted widely. An important, yet open question is the structure property relationship at small scales. Within this account, the application of a custom built manipulator for particle compression inside a scanning electron microscope (SEM) is presented: Stöber-Fink-Bohn (SFB) particles with mean diameters of 500nm and 1000nm are subjected to heat treatments and their mechanical properties are directly correlated to the internal structure. The as-synthesized SFB particles exhibit a complex and size dependent internal structure. Mechanical properties undermatching the values of fused silica are found and only plastic cracking at large strains is observed: cracks are formed at the surface and propagate in radial direction towards the particle center. Heat treatment leads to densification. The degree of changes is controlled by temperature and treatment time. Starting from initially low values, Young's modulus and hardness are increasing with treatment temperature. Properties of fused silica are approached or even exceeded after a treatment at 1000°C. A significant level of plasticity and high sustained deformations are still found. Whereas small particle show ductile cracking, the heat treated micron sized particles show a brittle behavior. A brittle to ductile transition in the size range of 500 nm to 1000 nm is thus identified
Pulmonary Arterial Stent Implantation in an Adult with Williams Syndrome
We report a 38-year-old patient who presented with pulmonary hypertension and right ventricular dysfunction due to pulmonary artery stenoses as a manifestation of Williams syndrome, mimicking chronic thromboembolic pulmonary hypertension. The patient was treated with balloon angioplasty and stent implantation. Short-term follow-up showed a good clinical result with excellent patency of the stents but early restenosis of the segments in which only balloon angioplasty was performed. These stenoses were subsequently also treated successfully by stent implantation. Stent patency was observed 3 years after the first procedure
An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has
hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two
supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian
phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification
Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea)
<p>Abstract</p> <p>Background</p> <p>Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea) form small communities within <it>Urostigma </it>and <it>Sycomorus </it>fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb) on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated.</p> <p>Results</p> <p>The resulting trees are well resolved and strongly supported. With the exception of <it>Apocrytophagus</it>, which is paraphyletic with respect to <it>Sycophaga</it>, all genera are monophyletic. The Sycophaginae are divided into three clades: (i) <it>Eukoebelea</it>; (ii) <it>Pseudidarnes</it>, <it>Anidarnes </it>and <it>Conidarnes </it>and (iii) <it>Apocryptophagus</it>, <it>Sycophaga </it>and <it>Idarnes</it>. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile.</p> <p>Conclusions</p> <p>The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gall-inducers are the only monophyletic group. In 15 Myr, they evolved several morphological adaptations to enter the syconia that make them strongly divergent from their sister taxa. Sycophaginae appears to be another example where sexual selection on male mating opportunities favored winged males in species with small broods and wingless males in species with large broods. However, some species are exceptional in that they lay few eggs but exhibit apterous males, which we hypothesize could be due to other selective pressures selecting against the re-appearance of winged morphs.</p
Improved reference genome of Aedes aegypti informs arbovirus vector control
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector
Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry
Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase
- …