3,650 research outputs found

    The family of quaternionic quasi-unitary Lie algebras and their central extensions

    Full text link
    The family of quaternionic quasi-unitary (or quaternionic unitary Cayley--Klein algebras) is described in a unified setting. This family includes the simple algebras sp(N+1) and sp(p,q) in the Cartan series C_{N+1}, as well as many non-semisimple real Lie algebras which can be obtained from these simple algebras by particular contractions. The algebras in this family are realized here in relation with the groups of isometries of quaternionic hermitian spaces of constant holomorphic curvature. This common framework allows to perform the study of many properties for all these Lie algebras simultaneously. In this paper the central extensions for all quasi-simple Lie algebras of the quaternionic unitary Cayley--Klein family are completely determined in arbitrary dimension. It is shown that the second cohomology group is trivial for any Lie algebra of this family no matter of its dimension.Comment: 17 pages, LaTe

    Central extensions of the families of quasi-unitary Lie algebras

    Get PDF
    The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families of algebras is given.Comment: 23 pages. Latex2e fil

    Integrable geodesic motion on 3D curved spaces from non-standard quantum deformations

    Full text link
    The link between 3D spaces with (in general, non-constant) curvature and quantum deformations is presented. It is shown how the non-standard deformation of a sl(2) Poisson coalgebra generates a family of integrable Hamiltonians that represent geodesic motions on 3D manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. A different Hamiltonian defined on the same deformed coalgebra is also shown to generate a maximally superintegrable geodesic motion on 3D Riemannian and (2+1)D relativistic spaces whose sectional curvatures are all constant and equal to z. This approach can be generalized to arbitrary dimension.Comment: 7 pages. Communication presented at the 14th Int. Colloquium on Integrable Systems 14-16 June 2005, Prague, Czech Republi

    Superintegrability on sl(2)-coalgebra spaces

    Full text link
    We review a recently introduced set of N-dimensional quasi-maximally superintegrable Hamiltonian systems describing geodesic motions, that can be used to generate "dynamically" a large family of curved spaces. From an algebraic viewpoint, such spaces are obtained through kinetic energy Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum deformation of it. Certain potentials on these spaces and endowed with the same underlying coalgebra symmetry have been also introduced in such a way that the superintegrability properties of the full system are preserved. Several new N=2 examples of this construction are explicitly given, and specific Hamiltonians leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Integrable potentials on spaces with curvature from quantum groups

    Full text link
    A family of classical integrable systems defined on a deformation of the two-dimensional sphere, hyperbolic and (anti-)de Sitter spaces is constructed through Hamiltonians defined on the non-standard quantum deformation of a sl(2) Poisson coalgebra. All these spaces have a non-constant curvature that depends on the deformation parameter z. As particular cases, the analogues of the harmonic oscillator and Kepler--Coulomb potentials on such spaces are proposed. Another deformed Hamiltonian is also shown to provide superintegrable systems on the usual sphere, hyperbolic and (anti-)de Sitter spaces with a constant curvature that exactly coincides with z. According to each specific space, the resulting potential is interpreted as the superposition of a central harmonic oscillator with either two more oscillators or centrifugal barriers. The non-deformed limit z=0 of all these Hamiltonians can then be regarded as the zero-curvature limit (contraction) which leads to the corresponding (super)integrable systems on the flat Euclidean and Minkowskian spaces.Comment: 19 pages, 1 figure. Two references adde

    Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature

    Full text link
    An infinite family of classical superintegrable Hamiltonians defined on the N-dimensional spherical, Euclidean and hyperbolic spaces are shown to have a common set of (2N-3) functionally independent constants of the motion. Among them, two different subsets of N integrals in involution (including the Hamiltonian) can always be explicitly identified. As particular cases, we recover in a straightforward way most of the superintegrability properties of the Smorodinsky-Winternitz and generalized Kepler-Coulomb systems on spaces of constant curvature and we introduce as well new classes of (quasi-maximally) superintegrable potentials on these spaces. Results here presented are a consequence of the sl(2) Poisson coalgebra symmetry of all the Hamiltonians, together with an appropriate use of the phase spaces associated to Poincare and Beltrami coordinates.Comment: 12 page

    Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions

    Full text link
    The Lie-Poisson algebra so(N+1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the ND spherical, Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N-3 functionally independent constants of the motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky-Winternitz system to the above six spaces, while the latter is a generalization of the Kepler-Coulomb potential, for which the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of the motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle
    corecore