553 research outputs found

    The Multifunctional Host Defense Peptide SPLUNC1 Is Critical for Homeostasis of the Mammalian Upper Airway

    Get PDF
    Otitis media (OM) is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA) technology to knock down expression of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1) to begin to determine the role that this protein played in prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance, key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear

    Paramedic assessment of pain in the cognitively impaired adult patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paramedics are often a first point of contact for people experiencing pain in the community. Wherever possible the patient's self report of pain should be sought to guide the assessment and management of this complaint. Communication difficulty or disability such as cognitive impairment associated with dementia may limit the patient's ability to report their pain experience, and this has the potential to affect the quality of care. The primary objective of this study was to systematically locate evidence relating to the use of pain assessment tools that have been validated for use with cognitively impaired adults and to identify those that have been recommended for use by paramedics.</p> <p>Methods</p> <p>A systematic search of health databases for evidence relating to the use of pain assessment tools that have been validated for use with cognitively impaired adults was undertaken using specific search criteria. An extended search included position statements and clinical practice guidelines developed by health agencies to identify evidence-based recommendations regarding pain assessment in older adults.</p> <p>Results</p> <p>Two systematic reviews met study inclusion criteria. Weaknesses in tools evaluated by these studies limited their application in assessing pain in the population of interest. Only one tool was designed to assess pain in acute care settings. No tools were located that are designed for paramedic use.</p> <p>Conclusion</p> <p>The reviews of pain assessment tools found that the majority were developed to assess chronic pain in aged care, hospital or hospice settings. An analysis of the characteristics of these pain assessment tools identified attributes that may limit their use in paramedic practice. One tool - the Abbey Pain Scale - may have application in paramedic assessment of pain, but clinical evaluation is required to validate this tool in the paramedic practice setting. Further research is recommended to evaluate the Abbey Pain Scale and to evaluate the effectiveness of paramedic pain management practice in older adults to ensure that the care of all patients is unaffected by age or disability.</p

    Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets

    Get PDF
    We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin regulators, the histone demethylase FLD and the MSI1-homologue FVE, a conserved WD-repeat protein found in many chromatin complexes. Here, we investigate how the RRM proteins interact genetically with these chromatin regulators at a range of loci in the Arabidopsis genome. We also investigate their interaction with the DNA methylation pathway. In several cases the RRM protein activity at least partially required a chromatin regulator to effect silencing. However, the interactions of the autonomous pathway components differed at each target analysed, most likely determined by certain properties of the target loci and/or other silencing pathways. We speculate that the RNA-binding proteins FCA and FPA function as part of a transcriptome surveillance mechanism linking RNA recognition with chromatin silencing mechanisms

    Different subcellular localisations of TRIM22 suggest species-specific function

    Get PDF
    The B30.2/SPRY domain is present in many proteins, including various members of the tripartite motif (TRIM) protein family such as TRIM5α, which mediates innate intracellular resistance to retroviruses in several primate species. This resistance is dependent on the integrity of the B30.2 domain that evolves rapidly in primates and exhibits species-specific anti-viral activity. TRIM22 is another positively selected TRIM gene. Particularly, the B30.2 domain shows rapid evolution in the primate lineage and recently published data indicate an anti-viral function of TRIM22. We show here that human and rhesus TRIM22 localise to different subcellular compartments and that this difference can be assigned to the positively selected B30.2 domain. Moreover, we could demonstrate that amino acid changes in two variable loops (VL1 and VL3) are responsible for the different subcellular localisations

    Monitoring frequency influences the analysis of resting behaviour in a forest carnivore

    Get PDF
    Resting sites are key structures for many mammalian species, which can affect reproduction, survival, population density, and even species persistence in human-modified landscapes. As a consequence, an increasing number of studies has estimated patterns of resting site use by mammals, as well as the processes underlying these patterns, though the impact of sampling design on such estimates remain poorly understood. Here we address this issue empirically, based on data from 21 common genets radiotracked during 28 months in Mediterranean forest landscapes. Daily radiotracking data was thinned to simulate every other day and weekly monitoring frequencies, and then used to evaluate the impact of sampling regime on estimates of resting site use. Results showed that lower monitoring frequencies were associated with major underestimates of the average number of resting sites per animal, and of site reuse rates and sharing frequency, though no effect was detected on the percentage use of resting site types. Monitoring frequency also had a major impact on estimates of environmental effects on resting site selection, with decreasing monitoring frequencies resulting in higher model uncertainty and reduced power to identify significant explanatory variables. Our results suggest that variation in monitoring frequency may have had a strong impact on intra- and interspecific differences in resting site use patterns detected in previous studies. Given the errors and uncertainties associated with low monitoring frequencies, we recommend that daily or at least every other day monitoring should be used whenever possible in studies estimating resting site use patterns by mammals

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Epigenetic Regulation of Histone H3 Serine 10 Phosphorylation Status by HCF-1 Proteins in C. elegans and Mammalian Cells

    Get PDF
    BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation

    Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein

    Get PDF
    After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer ‘top’ surface of N-MLV CA, including the N-terminal β-hairpin, and map up to 29 Ao apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1n and Fv1b. Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding
    corecore