5,017 research outputs found
Oolemmal proteomics â identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane
BACKGROUND: The mature mouse egg contains the full complement of maternal proteins required for fertilization, the transition to zygotic transcription, and the beginning stages of embryogenesis. Many of these proteins remain to be characterized, therefore in this study we have identified highly abundant egg proteins using a proteomic approach and found that several of these proteins also appear to localize to the egg surface. Characterization of such molecules will provide important insight into the cellular events of fertilization and early development. METHODS: In order to identify some of the more abundant egg proteins, whole egg extracts were resolved on coomassie-stained two-dimensional (2D) PAGE gels. Several highly abundant protein spots were cored and microsequenced by tandem mass spectrometry (TMS), and determined to be molecular chaperone proteins. Concurrent experiments were performed to identify oolemmal proteins using 2D avidin blotting. Proteins spots that appeared to be surface labeled by biotinylation were correlated with the initial coomassie-stained reference gel. Surprisingly, some of the surface labelled proteins corresponded to those abundant chaperone proteins previously identified. To confirm whether these molecules are accumulating at the oolemmal surface in eggs, we performed immunofluoresence on live, zona-free eggs using antibodies to HSP70, HSP90, GRP94, GRP78, calreticulin and calnexin. RESULTS: The putative surface-labeled proteins identified by biotinylation included the molecular chaperones HSP70 (MW 70 KDa, pI 5.5), HSP90a (MW 85 KDa, pI 4.9), GRP94 (MW 92 KDa, pI 4.7), GRP78 (MW 72 KDa, pI 5.0), Oxygen regulated protein 150 (ORP150; MW 111 KDa, pI 5.1), Calreticulin (MW 48 KDa, pI 4.3), Calnexin (MW 65 KDa, pI 4.5), and Protein disulfide isomerase (PDI; MW 57 KDa, pI 4.8). Immunofluoresence results showed that antibodies to HSP90, GRP94, GRP78 and calreticulin were reactive with oolemmal proteins. We were unable to confirm surface localization of HSP70 or calnexin by this method. CONCLUSIONS: We report here the identification of nine highly abundant molecular chaperones in the mouse egg proteome. In addition, we present preliminary data suggesting that these molecules localize to the oolemma of the mature mouse egg
Single InAs quantum dot arrays and directed self-organization on patterned GaAs (311)B substrates
Formation of laterally ordered single InAs quantum dot (QD) arrays by self-organized anisotropic strain engineering of InGaAs/GaAs superlattice templates on GaAs (311)B by molecular beam epitaxy is achieved through optimization of growth temperature, InAs amount, and annealing. Directed self-organization of these QD arrays is accomplished by coarse substrate patterns providing absolute QD position control over large areas. Due to the absence of one-to-one pattern definition the site-controlled QD arrays exhibit excellent optical properties revealed by resolution limited (80 ”eV) linewidth of the low-temperature photoluminescence from individual QDs. © 2009 American Institute of Physics
Towards a new theory of practice for community health psychology
The article sets out the value of theorizing collective action from a social science perspective that engages with the messy actuality of practice. It argues that community health psychology relies on an abstract version of Paulo Freireâs earlier writing, the Pedagogy of the Oppressed, which provides scholar-activists with a âmapâ approach to collective action. The article revisits Freireâs later work, the Pedagogy of Hope, and argues for the importance of developing a âjourneyâ approach to collective action. Theories of practice are discussed for their value in theorizing such journeys, and in bringing maps (intentions) and journeys (actuality) closer together
A checklist for clinical trials in rare disease: Obstacles and anticipatory actions-lessons learned from the FOR-DMD trial
Background: Trials in rare diseases have many challenges, among which are the need to set up multiple sites in different countries to achieve recruitment targets and the divergent landscape of clinical trial regulations in those countries. Over the past years, there have been initiatives to facilitate the process of international study set-up, but the fruits of these deliberations require time to be operationally in place. FOR-DMD (Finding the Optimum Steroid Regimen for Duchenne Muscular Dystrophy) is an academic-led clinical trial which aims to find the optimum steroid regimen for Duchenne muscular dystrophy, funded by the National Institutes of Health (NIH) for 5 years (July 2010 to June 2015), anticipating that all sites (40 across the USA, Canada, the UK, Germany and Italy) would be open to recruitment from July 2011. However, study start-up was significantly delayed and recruitment did not start until January 2013. Method: The FOR-DMD study is used as an example to identify systematic problems in the set-up of international, multi-centre clinical trials. The full timeline of the FOR-DMD study, from funding approval to site activation, was collated and reviewed. Systematic issues were identified and grouped into (1) study set-up, e.g. drug procurement; (2) country set-up, e.g. competent authority applications; and (3) site set-up, e.g. contracts, to identify the main causes of delay and suggest areas where anticipatory action could overcome these obstacles in future studies. Results: Time from the first contact to site activation across countries ranged from 6 to 24 months. Reasons of delay were universal (sponsor agreement, drug procurement, budgetary constraints), country specific (complexity and diversity of regulatory processes, indemnity requirements) and site specific (contracting and approvals). The main identified obstacles included (1) issues related to drug supply, (2) NIH requirements regarding contracting with non-US sites, (3) differing regulatory requirements in the five participating countries, (4) lack of national harmonisation with contracting and the requirement to negotiate terms and contract individually with each site and (5) diversity of languages needed for study materials. Additionally, as with many academic-led studies, the FOR-DMD study did not have access to the infrastructure and expertise that a contracted research organisation could provide, organisations often employed in pharmaceutical-sponsored studies. This delay impacted recruitment, challenged the clinical relevance of the study outcomes and potentially delayed the delivery of the best treatment to patients. Conclusion: Based on the FOR-DMD experience, and as an interim solution, we have devised a checklist of steps to not only anticipate and minimise delays in academic international trial initiation but also identify obstacles that will require a concerted effort on the part of many stakeholders to mitigate
- âŠ