42 research outputs found
CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data
This paper presents a novel method for ground segmentation in Velodyne point
clouds. We propose an encoding of sparse 3D data from the Velodyne sensor
suitable for training a convolutional neural network (CNN). This general
purpose approach is used for segmentation of the sparse point cloud into ground
and non-ground points. The LiDAR data are represented as a multi-channel 2D
signal where the horizontal axis corresponds to the rotation angle and the
vertical axis the indexes channels (i.e. laser beams). Multiple topologies of
relatively shallow CNNs (i.e. 3-5 convolutional layers) are trained and
evaluated using a manually annotated dataset we prepared. The results show
significant improvement of performance over the state-of-the-art method by
Zhang et al. in terms of speed and also minor improvements in terms of
accuracy.Comment: ICRA 2018 submissio
CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR
We introduce a novel method for odometry estimation using convolutional
neural networks from 3D LiDAR scans. The original sparse data are encoded into
2D matrices for the training of proposed networks and for the prediction. Our
networks show significantly better precision in the estimation of translational
motion parameters comparing with state of the art method LOAM, while achieving
real-time performance. Together with IMU support, high quality odometry
estimation and LiDAR data registration is realized. Moreover, we propose
alternative CNNs trained for the prediction of rotational motion parameters
while achieving results also comparable with state of the art. The proposed
method can replace wheel encoders in odometry estimation or supplement missing
GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our
solution brings real-time performance and precision which are useful to provide
online preview of the mapping results and verification of the map completeness
in real time
“Local Rank Differences” Image Feature Implemented on GPU
Abstract. A currently popular trend in object detection and pattern recognition is usage of statistical classifiers, namely AdaBoost and its modifications. The speed performance of these classifiers largely depends on the low level image features they are using: both on the amount of information the feature provides and the executional time of its evaluation. Local Rank Differences is an image feature that is alternative to commonly used haar wavelets. It is suitable for implementation in programmable (FPGA) or specialized (ASIC) hardware, but – as this paper shows – it performs very well on graphics hardware (GPU) as well. The paper discusses the LRD features and their properties, describes an experimental implementation of LRD in graphics hardware, presents its empirical performance measures compared to alternative approaches and suggests several notes on practical usage of LRD and proposes directions for future work.
1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results
The 1 Workshop on Maritime Computer Vision (MaCVi) 2023 focused
on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned
Surface Vehicle (USV), and organized several subchallenges in this domain: (i)
UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking,
(iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime
Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS
benchmarks. This report summarizes the main findings of the individual
subchallenges and introduces a new benchmark, called SeaDronesSee Object
Detection v2, which extends the previous benchmark by including more classes
and footage. We provide statistical and qualitative analyses, and assess trends
in the best-performing methodologies of over 130 submissions. The methods are
summarized in the appendix. The datasets, evaluation code and the leaderboard
are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.Comment: MaCVi 2023 was part of WACV 2023. This report (38 pages) discusses
the competition as part of MaCV